Advertisement
Original Report| Volume 10, ISSUE 6, P573-585, June 2009

Increased Phosphorylation of Extracellular Signal-Regulated Kinase in Trigeminal Nociceptive Neurons Following Propofol Administration in Rats

      Abstract

      Although propofol (PRO) is widely used in clinic as a hypnotic agent, the underlying mechanisms of its action on pain pathways is still unknown. Sprague-Dawley rats were assigned to receive PRO or pentobarbital (PEN) and were divided into 2 groups as LIGHT and DEEP hypnotic levels based on the EEG analysis. Rats in each hypnotic level received capsaicin injection into the face and phosphorylated extracellular signal-regulated kinase (pERK) immunohistochemistry was performed in subnucleus caudalis (Vc) and upper cervical spinal cord. In the rats with PEN or PRO administration, a large number of pERK-like immunoreactive (LI) cells was observed in the trigeminal spinal subnuclei interpolaris and caudalis transition zone (Vi/Vc), middle Vc, and transition zone between Vc and upper cervical spinal cord (Vc/C2) following capsaicin injection into the whisker-pad region. The number of pERK-LI cells in Vi/Vc, middle Vc, and Vc/C2 was significantly larger in rats with PRO infusion than those with PEN infusion. The number of pERK-LI cells was increased following an increase in the dose of PRO but not in PEN. The pERK-LI cells were mainly distributed in the Vi/Vc, middle Vc, and Vc/C2 after the bolus infusion of PRO. The expression of pERK-LI cells was depressed after the intravenous lidocaine application before bolus PRO infusion. The present findings suggest that PRO induced an enhancement of the activity of trigeminal nociceptive pathways through nociceptors innervating the venous structure, as indicated by a lidocaine-sensitive increase in pERK. This may explain deep pain around the injection regions during intravenous bolus infusion of PRO.

      Perspective

      The effect of propofol administration on ERK phosphorylation in the subregions of the spinal trigeminal complex and upper cervical spinal cord neurons were precisely analyzed in rats with PRO infusion. A large number of pERK-LI cells was observed following intravenous PRO administration, suggesting an enhancement of trigeminal nociceptive activity and that PRO may produce pain through nociceptors innervating the venous structures during infusion.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anker-Moller E.
        • Spangsberg N.
        • Arendt-Nielsen L.
        • Schultz P.
        • Kristensen M.S.
        • Bjerring P.
        Subhypnotic doses of thiopentone and propofol cause analgesia to experimentally-induced acute pain.
        Br J Anesthesia. 1999; 66: 185-188
        • Bachtell R.K.
        • Tsivkovskaia N.O.
        • Ryabinin A.E.
        Alcohol-induced c-Fos expression in the Edinger-Westphal nucleus: Pharmacological and signal transduction mechanisms.
        J Pharmacol Exp Ther. 2002; 302: 516-524
        • Bereiter D.A.
        • Bereiter D.F.
        N-Methyl-D-Aspartate and Non-N-Methyl-D-Aspartate receptor antagonism reduces Fos-like immunoreactivity in central trigeminal neurons after corneal stimulation in the rat.
        Neuroscience. 1996; 73: 249-258
        • Bodo M.
        • Perjes G.
        • Kalman E.
        • Bacskai E.
        • Berko K.
        • Sarkadi A.
        • Nagy I.
        • Keim K.L.
        • Matysik F.M.
        • Csomor K.
        • McCarron R.
        • Zagvazdin Y.
        • Rosenthal M.
        • Morrissette C.
        • Herendy E.
        • Szporny L.
        • Nagy Z.
        Screening for cerebroprotective agents using an in vivo model of cerebral reversible depolarization in awake rats.
        Pharmacol Res. 2001; 44: 419-429
        • Bullitt E.
        Somatotopy of spinal nociceptive processing.
        J Comp Neurol. 1991; 312: 279-290
        • Canavero S.
        • Bonicalzi V.
        • Pagni C.A.
        • Castellano G.
        • Merante R.
        • Gentile S.
        • Bradac G.B.
        • Bergui M.
        • Benna P.
        • Vighetti S.
        Propofol analgesia in central pain: Preliminary clinical observations.
        J Neurol. 1995; 242: 561-567
        • Carroll I.
        Intravenous lidocaine for neuropathic pain: Diagnostic utility and therapeutic efficacy.
        Curr Pain Headache Rep. 2007; 11: 20-24
        • Dai Y.
        • Iwata K.
        • Fukuoka T.
        • Kondo E.
        • Tokunaga A.
        • Yamanaka H.
        • Tachibana T.
        • Liu Y.
        • Noguchi K.
        Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization.
        J Neurosci. 2002; 22: 7737-7745
        • Dong X.P.
        • Xu T.L.
        The actions of propofol on gamma-aminobutyric acid-A and glycine receptors in acutely dissociated spinal dorsal horn neurons of the rat.
        Anesth Analg. 2002; 95: 907-914
        • Dzoljic E.
        • van Leeuwen R.
        • de Vries R.
        • Dzoljic M.R.
        Vigilance and EEG power in rats: Effects of potent inhibitors of the neuronal nitric oxide synthase.
        Naunyn Schmiedebergs Arch Pharmacol. 1997; 356: 56-61
        • Grasshoff C.
        • Antkowiak B.
        Propofol and sevoflurane depress spinal neurons in vitro via different molecular targets.
        Anesthesiology. 2004; 101: 1167-1176
        • Hara M.
        • Kai Y.
        • Ikemoto Y.
        Enhancement by propofol of the gamma-aminobutyric acidA response in dissociated hippocampal pyramidal neurons of the rat.
        Anesthesiology. 1994; 81: 988-994
        • Hathaway C.B.
        • Hu J.W.
        • Bereiter D.
        Distribution of Fos-like immunoreactivity in the caudal brainstem of the rat following noxious chemical stimulation of the temporomandibular joint.
        J Comp Neurol. 1995; 356: 444-456
        • Hu J.W.
        • Sessle B.J.
        Comparison of responses of cutaneous nociceptive and nonnociceptive brain stem neurons in trigeminal subnucleus caudalis (medullary dorsal horn) and subnucleus oralis to natural and electrical stimulation of tooth pulp.
        J Neurophysiol. 1984; 52: 39-53
        • Ichinose F.
        • Miyazaki M.
        • Goto T.
        • Takahashi H.
        • Terui K.
        • Niimi Y.
        • Uezono S.
        • Morita S.
        • Yanagida H.
        Electroencephalographic responses to the formalin test in rats.
        Pain. 1999; 80: 251-256
        • Imbe H.
        • Dubner R.
        • Ren K.
        Masseteric inflammation-induced Fos protein expression in the trigeminal interpolariscaudalis transition zone: Contribution of somatosensory-vagal-adrenal integration.
        Brain Res. 1999; 845: 165-175
        • Imbe H.
        • Murakami S.
        • Okamto K.
        • Iwai-Liao Y.
        • Senba E.
        The effects of acute and chronic restraint stress on activation of ERK in the rostral ventromedial medulla and locus coeruleus.
        Pain. 2004; 112: 361-371
        • Jelev A.
        • Sood S.
        • Liu H.
        • Nolan P.
        • Horner R.L.
        Microdialysis perfusion of 5-HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep-wake states in rats.
        J Physiol. 2001; 532: 467-481
        • Jewett B.A.
        • Gibbs L.M.
        • Tarasiuk A.
        • Kendig J.J.
        Propofol and barbiturate depression of spinal nociceptive neurotransmission.
        Anesthesiology. 1992; 77: 1148-1154
        • Ji R.R.
        • Baba H.
        • Brenner G.J.
        • Woolf C.J.
        Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity.
        Nat Neurosci. 1999; 2: 1114-1119
        • Ji R.R.
        • Befort K.
        • Brenner G.J.
        • Woolf C.J.
        ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity.
        J Neurosci. 2002; 22: 478-485
        • Ji R.R.
        • Kohno T.
        • Moore K.A.
        • Woolf C.J.
        Central sensitization and LTP: Do pain and memory share similar mechanisms?.
        Trends Neurosci. 2003; 26: 696-705
        • Kalso E.
        Sodium channel blockers in neuropathic pain.
        Curr Pharm. 2005; 11: 3005-3011
        • Kawasaki Y.
        • Kohno T.
        • Zhuang Z.Y.
        • Brenner G.J.
        • Wang H.
        • Van Der Meer C.
        • Befort K.
        • Woolf C.J.
        • Ji R.R.
        Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization.
        J Neurosci. 2004; 24: 8310-8321
        • Kay B.
        • Rolly G.
        I.C.I. 35868, a new intravenous induction agent.
        Acta Anaesthesiol Belg. 1977; 28: 303-316
        • Kubota I.
        • Tsuboi Y.
        • Shoda E.
        • Kondo M.
        • Masuda Y.
        • Kitagawa J.
        • Oi Y.
        • Iwata K.
        Modulation of neuronal activity in CNS pain pathways following propofol administration in rats: Fos and EEG analysis.
        Exp Brain Res. 2007; 179: 181-190
        • Lin Q.
        • Peng Y.
        • Wills W.D.
        Glycine and GABAA antagonists reduce the inhibition of primate spinothalamic tract neurons produced by stimulation in periaqueductal gray.
        Brain Res. 1994; 654: 286-302
        • Liu N.
        • Chazot T.
        • Huybrechts I.
        • Law-Koune J.D.
        • Barvais L.
        • Fischler M.
        The influence of a muscle relaxant bolus on bispectral and datex-ohmeda entropy values during propofol-remifentanil induced loss of consciousness.
        Anesth Analg. 2005; 101: 1713-1738
        • Liu Y.
        • Obata K.
        • Yamanaka H.
        • Dai Y.
        • Fukuoka T.
        • Tokunaga A.
        • Noguchi K.
        Activation of extracellular signal-regulated protein kinase in dorsal horn neurons in the rat neuropathic intermittent claudication model.
        Pain. 2004; 109: 64-72
        • Lu H.
        • Xu T.L.
        The general anesthetic pentobarbital slows desensitization and deactivation of the glycine receptor in the rat spinal dorsal horn neurons.
        J Biol Chem. 2002; 277: 41369-41378
        • MacIver M.B.
        • Mandema J.W.
        • Stanski D.R.
        • Bland B.H.
        Thiopental uncouples hippocampal and cortical synchronized electroencephalographic activity.
        Anesthesiology. 1996; 84: 1411-1424
        • McCulloch M.J.
        • Less N.W.
        Assessment and modification of pain on induction with propofol (Diprivan).
        Anaesthesia. 1985; 40: 1117-1120
        • Naguib M.
        • Schmid 3rd, P.G.
        • Baker M.T.
        The electroencephalographic effects of IV anesthetic doses of melatonin: Comparative studies with thiopental and propofol.
        Anesth Analg. 2003; 97: 238-243
        • Nicol M.E.
        • Moriarty J.
        • Edwards J.
        • Robbie D.S.
        A'Hern RP: Modification of pain on injection of propofol: A comparison between lignocaine and procaine.
        Anaesthesia. 1991; 46: 67-69
        • Noma N.
        • Tsuboi Y.
        • Kondo M.
        • Matsumoto M.
        • Sessle B.J.
        • Kitagawa J.
        • Saito K.
        • Iwata K.
        Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats.
        J Comp Neurol. 2008; 20: 1428-1440
        • Nomura H.
        • Ogawa A.
        • Tashiro A.
        • Morimoto T.
        • Hu J.W.
        • Iwata K.
        Induction of Fos protein-like immunoreactivity in the trigeminal spinal nucleus caudalis and upper cervical cord following noxious and non-noxious mechanical stimulation of the whisker pad of the rat with an inferior alveolar nerve transection.
        Pain. 2002; 95: 225-238
        • Park S.J.
        • Chiang C.Y.
        • Hu J.W.
        • Sessle B.J.
        Neuroplasticity induced by tooth pulp stimulation in trigeminal subnucleus oralis involves NMDA receptor mechanisms.
        J Neurophysiol. 2001; 85: 1836-1846
        • Petersen-Felix S.
        • Arendt-Nielsen L.
        • Bak P.
        • Fischer M.
        • Zbinden A.M.
        Psychophysical and electrophysiological responses to experimental pain may be influenced by sedation: Comparison of the effects of a hypnotic (propofol) and an analgesic (alfentanil).
        Br J Anaesthesia. 1996; 77: 165-171
        • Reichling D.B.
        • Basbaum A.I.
        Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus.
        J Comp Neurol. 1990; 302: 370-377
        • Sanna E.
        • Garau F.
        • Harris R.A.
        Novel properties of homomeric beta 1 gamma-aminobutyric acid type A receptors: Actions of the anesthetics propofol and pentobarbital.
        Mol Pharmacol. 1995; 47: 213-217
        • Shimizu K.
        • Asano M.
        • Kitagawa J.
        • Ogiso B.
        • Ren K.
        • Oki H.
        • Matsumoto M.
        • Iwata K.
        Phosphorylation of extracellular signal-regulated kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation.
        Brain Res. 2006; 1072: 99-109
        • Takemura M.
        • Shimada T.
        • Shigenaga Y.
        GABA(A) receptor-mediated effects on expression of c-Fos in rat trigeminal nucleus following high- and low-intensity afferent stimulation.
        Neuroscience. 2000; 98: 325-332
        • Tan P.P.
        • Shyr M.H.
        • Yang C.H.
        • Kuo T.B.
        • Pan W.H.
        • Chan S.H.
        Power spectral analysis of the electroencephalographic and hemodynamic correlates of propofol anesthesia in the rat: Intravenous infusion.
        Neurosci Lett. 1993; 160: 205-208
        • Vijn P.C.
        • Sneyd J.R.
        I.v. anaesthesia and EEG burst suppression in rats: Bolus injections and closed-loop infusions.
        Br J Anaesth. 1998; 81: 415-421
        • Wood J.N.
        • Boorman J.P.
        • Okuse K.
        • Baker M.D.
        Voltage-gated sodium channels and pain pathways.
        J Neurobiol. 2004; 61: 55-71
        • Ying S.W.
        • Goldstein P.A.
        Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABAA receptor chloride channels.
        Mol Pain. 2005; 1: 1-14
        • Zhu W.
        • Xu P.
        • Cuascut F.X.
        • Hall A.K.
        • Oxford G.S.
        Activin acutely sensitizes dorsal root ganglion neurons and induces hyperalgesia via PKC-mediated potentiation of transient receptor potential vanilloid I.
        J Neurosci. 2007; 27: 13770-13780
        • Zimmerman M.
        Ethical guidelines for investigation of experimental pain in conscious animals.
        Pain. 1983; 16: 109-110