Advertisement
Original Report| Volume 10, ISSUE 9, P961-968, September 2009

Continuous Buprenorphine Delivery Effect in Streptozotocine-Induced Painful Diabetic Neuropathy in Rats

      Abstract

      Diabetic peripheral neuropathy (DPN) can induce loss of nociception as well as mechanical hyperalgesia and tactile allodynia. Pharmacological and clinical studies have shown that buprenorphine, a low-molecular-weight, lipophilic, opioid analgesic available as a transdermal matrix patch formulation, acts on neuropathic pain. To assess the role of buprenorphine in the treatment of DPN-associated neuropathic pain, we used a well-established experimental rat model of DPN in which buprenorphine at doses of 1.2 and 2.4 μg/kg/h was administered by implantable Alzet osmotic pumps for 3 weeks. After 6 weeks of diabetes, nerve conduction velocity (NCV) and behavioural responses to noxious mechanical and thermal stimuli were assessed. Diabetic rats showed an impairment of NCV, mechanical allodynia, and thermal hypoalgesia. Both doses of buprenorphine significantly reversed the diabetes-induced allodynia up to day 7 of treatment. Buprenorphine did not alter either thermal perception or NCV.

      Perspective

      This study evaluated, through a multimodal approach, the analgesic effect of buprenorphine in an experimental rat model of painful DPN. Our results suggest a possible role for buprenorphine in the management of DPN-associated neuropathic pain.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bannwarth B.
        Risk-benefit assessment of opioids in chronic noncancer pain.
        Drug Saf. 1999; 21: 283-296
        • Bianchi R.
        • Buyukakilli B.
        • Brines M.
        • Savino C.
        • Cavaletti G.
        • Oggioni N.
        • Lauria G.
        • Borgna M.
        • Lombardi R.
        • Cimen B.
        • Comelekoglu U.
        • Kanik A.
        • Tataroglu C.
        • Cerami A.
        • Ghezzi P.
        Erythropoietin both protects from and reverses experimental diabetic neuropathy.
        Proc Natl Acad Sci U S A. 2004; 101: 823-828
        • Bianchi R.
        • Marini P.
        • Merlini S.
        • Fabris M.
        • Triban C.
        • Mussini E.
        • Fiori M.G.
        ATPase activity defects in alloxan-induced diabetic sciatic nerve recovered by ganglioside treatment.
        Diabetes. 1988; 37: 1340-1345
        • Boger R.H.
        Renal impairment: A challenge for opioid treatment? The role of buprenorphine.
        Palliat Med. 2006; 20: s17-s23
        • Borgland S.L.
        Acute opioid receptor desensitization and tolerance: Is there a link?.
        Clin Exp Pharmacol Physiol. 2001; 28: 147-154
        • Brase D.A.
        Is intracellular sodium involved in the mechanism of tolerance to opioid drugs?.
        Med Hypotheses. 1990; 32: 161-167
        • Calcutt N.A.
        • Freshwater J.D.
        • Mizisin A.P.
        Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor.
        Diabetologia. 2004; 47: 718-724
        • Cavaletti G.
        • Cavalletti E.
        • Montaguti P.
        • Oggioni N.
        • De Negri O.
        • Tredici G.
        Effect on the peripheral nervous system of the short-term intravenous administration of paclitaxel in the rat.
        Neurotoxicology. 1997; 18: 137-145
        • Cavaletti G.
        • Fabbrica D.
        • Minoia C.
        • Frattola L.
        • Tredici G.
        Carboplatin toxic effects on the peripheral nervous system of the rat.
        Ann Oncol. 1998; 9: 443-447
        • Courteix C.
        • Eschalier A.
        • Lavarenne J.
        Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain.
        Pain. 1993; 53: 81-88
        • Cowan A.
        Buprenorphine: New pharmacological aspects.
        Int J Clin Pract Suppl. 2003; 3-8: 23-24
        • Cowan A.
        • Doxey J.C.
        • Harry E.J.
        The animal pharmacology of buprenorphine, an oripavine analgesic agent.
        Br J Pharmacol. 1977; 60: 547-554
        • Cowan A.
        • Lewis J.W.
        • Macfarlane I.R.
        Agonist and antagonist properties of buprenorphine, a new antinociceptive agent.
        Br J Pharmacol. 1977; 60: 537-545
        • Debruyne D.
        • Quentin T.
        • Poisnel G.
        • Lelong-Boulouard V.
        • Barre L.
        • Coquerel A.
        Acute and chronic administration of clorazepate modifies the cell surface regulation of mu opioid receptors induced by buprenorphine in specific regions of the rat brain.
        Brain Res. 2005; 1052: 222-231
        • Dellemijn P.L.
        • Vanneste J.A.
        Randomised double-blind active-placebo-controlled crossover trial of intravenous fentanyl in neuropathic pain.
        Lancet. 1997; 349: 753-758
        • Dini D.
        • Fassio T.
        • Gottlieb A.
        • Gini M.
        [Controlled study of the analgesic effect and tolerability of buprenorphine in cancer patients].
        Minerva Med. 1986; 77: 93-104
        • Eisenberg E.
        • McNicol E.D.
        • Carr D.B.
        Efficacy of mu-opioid agonists in the treatment of evoked neuropathic pain: Systematic review of randomized controlled trials.
        Eur J Pain. 2006; 10: 667-676
        • Evans H.C.
        • Easthope S.E.
        Transdermal buprenorphine.
        Drugs. 2003; 63: 1999-2010
        • Freye E.
        • Latasch L.
        [Development of opioid tolerance: Molecular mechanisms and clinical consequences].
        Anasthesiol Intensivmed Notfallmed Schmerzther. 2003; 38: 14-26
        • Grecksch G.
        • Bartzsch K.
        • Widera A.
        • Becker A.
        • Hollt V.
        • Koch T.
        Development of tolerance and sensitization to different opioid agonists in rats.
        Psychopharmacology (Berl). 2006; 186: 177-184
        • Harati Y.
        • Gooch C.
        • Swenson M.
        • Edelman S.
        • Greene D.
        • Raskin P.
        • Donofrio P.
        • Cornblath D.
        • Sachdeo R.
        • Siu C.O.
        • Kamin M.
        Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy.
        Neurology. 1998; 50: 1842-1846
        • Hsu M.M.
        • Wong C.S.
        The roles of pain facilitatory systems in opioid tolerance.
        Acta Anaesthesiol Sin. 2000; 38: 155-166
        • Kiguchi S.
        • Imamura T.
        • Ichikawa K.
        • Kojima M.
        Oxcarbazepine antinociception in animals with inflammatory pain or painful diabetic neuropathy.
        Clin Exp Pharmacol Physiol. 2004; 31: 57-64
        • Kouya P.F.
        • Hao J.X.
        • Xu X.J.
        Buprenorphine alleviates neuropathic pain-like behaviors in rats after spinal cord and peripheral nerve injury.
        Eur J Pharmacol. 2002; 450: 49-53
        • Lauria G.
        • Lombardi R.
        • Borgna M.
        • Penza P.
        • Bianchi R.
        • Savino C.
        • Canta A.
        • Nicolini G.
        • Marmiroli P.
        • Cavaletti G.
        Intraepidermal nerve fiber density in rat foot pad: Neuropathologic-neurophysiologic correlation.
        J Periph Nerv Syst. 2005; 10: 202-208
        • Lewis J.W.
        • Husbands S.M.
        The orvinols and related opioids: High affinity ligands with diverse efficacy profiles.
        Curr Pharm Des. 2004; 10: 717-732
        • Likar R.
        • Sittl R.
        Transdermal buprenorphine for treating nociceptive and neuropathic pain: Four case studies.
        Anesth Analg. 2005; 100: 781-785
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J Biol Chem. 1951; 193: 265-275
        • Malcangio M.
        • Tomlinson D.R.
        A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats.
        Pain. 1998; 76: 151-157
        • Mao J.
        • Price D.D.
        • Mayer D.J.
        Experimental mononeuropathy reduces the antinociceptive effects of morphine: Implications for common intracellular mechanisms involved in morphine tolerance and neuropathic pain.
        Pain. 1995; 61: 353-364
        • Masocha W.
        • Gonzalez L.G.
        • Baeyens J.M.
        • Agil A.
        Mechanisms involved in morphine-induced activation of synaptosomal Na+,K+-ATPase.
        Brain Res. 2002; 957: 311-319
        • McQuay H.J.
        Neuropathic pain: Evidence matters.
        Eur J Pain 6(Suppl A). 2002; : 11-18
        • Motta E.M.
        • Calixto J.B.
        • Rae G.A.
        Mechanical hyperalgesia induced by endothelin-1 in rats is mediated via phospholipase C, protein kinase C, and MAP kinases.
        Exp Biol Med (Maywood). 2006; 231: 1141-1145
        • Park I.
        • Kim D.
        • Song J.
        • In C.H.
        • Jeong S.W.
        • Lee S.H.
        • Min B.
        • Lee D.
        • Kim S.O.
        Buprederm, a new transdermal delivery system of buprenorphine: Pharmacokinetic, efficacy and skin irritancy studies.
        Pharm Res. 2008; 25: 1052-1062
        • Pergolizzi J.
        • Boger R.H.
        • Budd K.
        • Dahan A.
        • Erdine S.
        • Hans G.
        • Kress H.G.
        • Langford R.
        • Likar R.
        • Raffa R.B.
        • Sacerdote P.
        Opioids and the management of chronic severe pain in the elderly: Consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone).
        Pain Pract. 2008; 8: 287-313
        • Picard P.R.
        • Tramer M.R.
        • McQuay H.J.
        • Moore R.A.
        Analgesic efficacy of peripheral opioids (all except intra-articular): A qualitative systematic review of randomised controlled trials.
        Pain. 1997; 72: 309-318
        • Radbruch L.
        • Vielvoye-Kerkmeer A.
        Buprenorphine TDS: The clinical development rationale and results.
        Int J Clin Pract Suppl. 2003; : 15-18
        • Rossano C.
        • De Luca L.F.
        • Firetto V.
        • Fossi F.
        Activity and tolerability of buprenorphine after parenteral and sublingual administration.
        Clin Ther. 1982; 5: 61-68
        • Rowbotham M.C.
        • Twilling L.
        • Davies P.S.
        • Reisner L.
        • Taylor K.
        • Mohr D.
        Oral opioid therapy for chronic peripheral and central neuropathic pain.
        N Engl J Med. 2003; 348: 1223-1232
        • Sadee W.
        • Rosenbaum J.S.
        • Herz A.
        Buprenorphine: Differential interaction with opiate receptor subtypes in vivo.
        J Pharmacol Exp Ther. 1982; 223: 157-162
        • Said G.
        Diabetic neuropathy: A review.
        Nat Clin Pract Neurol. 2007; 3: 331-340
        • Sittl R.
        Transdermal buprenorphine in the treatment of chronic pain.
        Expert Rev Neurother. 2005; 5: 315-323
        • Sporer K.A.
        Buprenorphine: A primer for emergency physicians.
        Ann Emerg Med. 2004; 43: 580-584
        • Strain E.C.
        • Stitzer M.L.
        • Liebson I.A.
        • Bigelow G.E.
        Comparison of buprenorphine and methadone in the treatment of opioid dependence.
        Am J Psychiatry. 1994; 151: 1025-1030
        • Strain E.C.
        • Stitzer M.L.
        • Liebson I.A.
        • Bigelow G.E.
        Buprenorphine versus methadone in the treatment of opioid dependence: Self-reports, urinalysis, and addiction severity index.
        J Clin Psychopharmacol. 1996; 16: 58-67
        • Sugimoto K.
        • Rashid I.B.
        • Shoji M.
        • Suda T.
        • Yasujima M.
        Early changes in insulin receptor signaling and pain sensation in streptozotocin-induced diabetic neuropathy in rats.
        J Pain. 2008; 9: 237-245
        • Vinik A.I.
        • Park T.S.
        • Stansberry K.B.
        • Pittenger G.L.
        Diabetic neuropathies.
        Diabetologia. 2000; 43: 957-973