Minocycline Attenuates Mechanical Allodynia and Central Sensitization Following Peripheral Second-Degree Burn Injury

  • Yu-Wen Chang
    Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, Connecticut

    Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut
    Search for articles by this author
  • Stephen G. Waxman
    Address reprint requests to Stephen G. Waxman, M.D., Ph.D., Neuroscience Research (Bldg. 34), VA Medical Center (127A), 950 Campbell Ave, West Haven, CT 06516.
    Department of Neurology and Center for Neuroscience & Regeneration Research, Yale University School of Medicine, New Haven, Connecticut

    Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut
    Search for articles by this author


      Burn injury induces severe pain that can be refractory to existing pharmacotherapies. The underlying mechanism of burn pain remains unclear. We previously established an animal model and reported that unilateral burn injury induces chronic and bilateral mechanical allodynia, which is associated with central sensitization and microglial activation in the spinal cord dorsal horn. Modulation of the activity of microglia and p38 mitogen-activated protein kinase (MAPK) has been shown to ameliorate neuropathic pain in several nerve-injury pain models. In the present study, we show in this rat model that daily treatment with the microglial inhibitor minocycline (10 mg/kg), administered at the time of burn injury and for 7 days thereafter, significantly attenuates ipsilateral and contralateral allodynia as assessed up to 1 month following burn injury. These sensory changes are paralleled by significant suppression of evoked hyperexcitability of dorsal-horn neurons and of the expression of phosphorylated p38 (phospho-p38) in OX42+ microglial cells within the dorsal horn. Our results suggest that modulation of inflammation at early times after burn injury may have long-lasting effects, attenuating central neuropathic mechanisms which contribute to pain after burn injury.


      We demonstrate, in a rodent model of burn-associated pain, that the microglial inhibitor minocycline, delivered at the time of burn injury and for 1 week thereafter, has long-lasting effects, attenuating microglial activation and neuronal hyperresponsiveness in the dorsal horns, and ameliorating allodynia for at least 1 month.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Chang Y.W.
        • Tan A.
        • Saab C.
        • Waxman S.
        Unilateral Focal Burn Injury Is Followed by Long-Lasting Bilateral Allodynia and Neuronal Hyperexcitability in Spinal Cord Dorsal Horn.
        J Pain. 2009; 11: 119-130
        • Chaplan S.R.
        • Bach F.W.
        • Pogrel J.W.
        • Chung J.M.
        • Yaksh T.L.
        Quantitative assessment of tactile allodynia in the rat paw.
        J Neurosci Methods. 1994; 53: 55-63
        • Chapman V.
        • Suzuki R.
        • Dickenson A.H.
        Electrophysiological characterization of spinal neuronal response properties in anaesthetized rats after ligation of spinal nerves L5-L6.
        J Physiol. 1998; 507: 881-894
        • Choiniere M.
        • Melzack R.
        • Papillon J.
        Pain and paresthesia in patients with healed burns: An exploratory study.
        J Pain Symptom Manage. 1991; 6: 437-444
        • Christensen M.D.
        • Hulsebosch C.E.
        Chronic central pain after spinal cord injury.
        J Neurotrauma. 1997; 14: 517-537
        • Clark A.K.
        • D'Aquisto F.
        • Gentry C.
        • Marchand F.
        • McMahon S.B.
        • Malcangio M.
        Rapid co-release of interleukin 1beta and caspase 1 in spinal cord inflammation.
        J Neurochem. 2006; 99: 868-880
        • Coull J.A.
        • Beggs S.
        • Boudreau D.
        • Boivin D.
        • Tsuda M.
        • Inoue K.
        • Gravel C.
        • Salter M.W.
        • De Koninck Y.
        BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain.
        Nature. 2005; 438: 1017-1021
        • Crown E.D.
        • Gwak Y.S.
        • Ye Z.
        • Johnson K.M.
        • Hulsebosch C.E.
        Activation of p38 MAP kinase is involved in central neuropathic pain following spinal cord injury.
        Exp Neurol. 2008; 213: 257-267
        • D'Mello R.
        • Dickenson A.H.
        Spinal cord mechanisms of pain.
        Br J Anaesth. 2008; 101: 8-16
        • Dahl J.B.
        • Brennum J.
        • Arendt-Nielsen L.
        • Jensen T.S.
        • Kehlet H.
        The effect of pre- versus postinjury infiltration with lidocaine on thermal and mechanical hyperalgesia after heat injury to the skin.
        Pain. 1993; 53: 43-51
        • Dixon W.J.
        Efficient analysis of experimental observations.
        Annu Rev Pharmacol Toxicol. 1980; 20: 441-462
        • Gabay E.
        • Tal M.
        Pain behavior and nerve electrophysiology in the CCI model of neuropathic pain.
        Pain. 2004; 110: 354-360
        • Guasti L.
        • Richardson D.
        • Jhaveri M.
        • Eldeeb K.
        • Barrett D.
        • Elphick M.R.
        • Alexander S.P.
        • Kendall D.
        • Michael G.J.
        • Chapman V.
        Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain.
        Mol Pain. 2009; 5: 35
        • Guo W.
        • Wang H.
        • Watanabe M.
        • Shimizu K.
        • Zou S.
        • LaGraize S.C.
        • Wei F.
        • Dubner R.
        • Ren K.
        Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain.
        J Neurosci. 2007; 27: 6006-6018
        • Gwak Y.S.
        • Tan H.Y.
        • Nam T.S.
        • Paik K.S.
        • Hulsebosch C.E.
        • Leem J.W.
        Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury.
        J Neurotrauma. 2006; 23: 1111-1124
        • Hains B.C.
        • Klein J.P.
        • Saab C.Y.
        • Craner M.J.
        • Black J.A.
        • Waxman S.G.
        Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury.
        J Neurosci. 2003; 23: 8881-8892
        • Hains B.C.
        • Saab C.Y.
        • Klein J.P.
        • Craner M.J.
        • Waxman S.G.
        Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury.
        J Neurosci. 2004; 24: 4832-4839
        • Hains B.C.
        • Waxman S.G.
        Activated microglia contribute to the maintenance of chronic pain after spinal cord injury.
        J Neurosci. 2006; 26: 4308-4317
        • Hains B.C.
        • Willis W.D.
        • Hulsebosch C.E.
        Temporal plasticity of dorsal horn somatosensory neurons after acute and chronic spinal cord hemisection in rat.
        Brain Res. 2003; 970: 238-241
        • Heese K.
        • Fiebich B.L.
        • Bauer J.
        • Otten U.
        NF-kappaB modulates lipopolysaccharide-induced microglial nerve growth factor expression.
        Glia. 1998; 22: 401-407
        • Hua X.Y.
        • Svensson C.I.
        • Matsui T.
        • Fitzsimmons B.
        • Yaksh T.L.
        • Webb M.
        Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia.
        Eur J Neurosci. 2005; 22: 2431-2440
        • Hulsebosch C.E.
        • Hains B.C.
        • Crown E.D.
        • Carlton S.M.
        Mechanisms of chronic central neuropathic pain after spinal cord injury.
        Brain Res Rev. 2009; 60: 202-213
        • Ji R.R.
        • Gereau R.W.I.V.
        • Malcangio M.
        • Strichartz G.R.
        MAP kinase and pain.
        Brain Res Rev. 2009; 60: 135-148
        • Ji R.R.
        • Suter M.R.
        p38 MAPK, microglial signaling, and neuropathic pain.
        Mol Pain. 2007; 3: 33
        • Jin S.X.
        • Zhuang Z.Y.
        • Woolf C.J.
        • Ji R.R.
        p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain.
        J Neurosci. 2003; 23: 4017-4022
        • Kawasaki Y.
        • Xu Z.Z.
        • Wang X.
        • Park J.Y.
        • Zhuang Z.Y.
        • Tan P.H.
        • Gao Y.J.
        • Roy K.
        • Corfas G.
        • Lo E.H.
        • Ji R.R.
        Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain.
        Nat Med. 2008; 14: 331-336
        • Kawasaki Y.
        • Zhang L.
        • Cheng J.K.
        • Ji R.R.
        Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord.
        J Neurosci. 2008; 28: 5189-5194
        • Koltzenburg M.
        • Wall P.D.
        • McMahon S.B.
        Does the right side know what the left is doing?.
        Trends Neurosci. 1999; 22: 122-127
        • Latremoliere A.
        • Woolf C.J.
        Central sensitization: A generator of pain hypersensitivity by central neural plasticity.
        J Pain. 2009; 10: 895-926
        • Ledeboer A.
        • Sloane E.M.
        • Milligan E.D.
        • Frank M.G.
        • Mahony J.H.
        • Maier S.F.
        • Watkins L.R.
        Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation.
        Pain. 2005; 115: 71-83
        • Malenfant A.
        • Forget R.
        • Amsel R.
        • Papillon J.
        • Frigon J.Y.
        • Choiniere M.
        Tactile, thermal and pain sensibility in burned patients with and without chronic pain and paresthesia problems.
        Pain. 1998; 77: 241-251
        • Milligan E.D.
        • Twining C.
        • Chacur M.
        • Biedenkapp J.
        • O'Connor K.
        • Poole S.
        • Tracey K.
        • Martin D.
        • Maier S.F.
        • Watkins L.R.
        Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats.
        J Neurosci. 2003; 23: 1026-1040
        • Moiniche S.
        • Pedersen J.L.
        • Kehlet H.
        Topical ketorolac has no antinociceptive or anti-inflammatory effect in thermal injury.
        Burns 20. 1994; : 483-486
        • Montgomery R.K.
        Pain management in burn injury.
        Crit Care Nurs Clin North Am. 2004; 16: 39-49
        • Owolabi S.A.
        • Saab C.Y.
        Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn.
        FEBS Lett. 2006; 580: 4306-4310
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotaxic Coordinates, 6th ed.
        Academic Press, San Diego, CA1998
        • Pedersen J.L.
        • Moiniche S.
        • Kehlet H.
        Topical glucocorticoid has no antinociceptive or anti-inflammatory effect in thermal injury.
        Br J Anaesth. 1994; 72: 379-382
        • Petersen K.L.
        • Meadoff T.
        • Press S.
        • Peters M.M.
        • LeComte M.D.
        • Rowbotham M.C.
        Changes in morphine analgesia and side effects during daily subcutaneous administration in healthy volunteers.
        Pain. 2008; 137: 395-404
        • Raghavendra V.
        • Tanga F.
        • DeLeo J.A.
        Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy.
        J Pharmacol Exp Ther. 2003; 306: 624-630
        • Sorkin L.
        • Svensson C.I.
        • Jones-Cordero T.L.
        • Hefferan M.P.
        • Campana W.M.
        Spinal p38 mitogen-activated protein kinase mediates allodynia induced by first-degree burn in the rat.
        J Neurosci Res. 2009; 87: 948-955
        • Summer G.J.
        • Puntillo K.A.
        • Miaskowski C.
        • Green P.G.
        • Levine J.D.
        Burn injury pain: The continuing challenge.
        J Pain. 2007; 8: 533-548
        • Summer G.J.
        • Romero-Sandoval E.A.
        • Bogen O.
        • Dina O.A.
        • Khasar S.G.
        • Levine J.D.
        Proinflammatory cytokines mediating burn-injury pain.
        Pain. 2008; 135: 98-107
        • Takaishi K.
        • Eisele Jr., J.H.
        • Carstens E.
        Behavioral and electrophysiological assessment of hyperalgesia and changes in dorsal horn responses following partial sciatic nerve ligation in rats.
        Pain. 1996; 66: 297-306
        • Tsuda M.
        • Mizokoshi A.
        • Shigemoto-Mogami Y.
        • Koizumi S.
        • Inoue K.
        Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury.
        Glia. 2004; 45: 89-95
        • Ulmann L.
        • Hatcher J.P.
        • Hughes J.P.
        • Chaumont S.
        • Green P.J.
        • Conquet F.
        • Buell G.N.
        • Reeve A.J.
        • Chessell I.P.
        • Rassendren F.
        Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain.
        J Neurosci. 2008; 28: 11263-11268
        • Willis W.D.
        • Coggeshall R.E.
        Sensory Mechanisms of the Spinal Cord, 3rd ed.
        Kluwer Academic/Plenum, New York, NY2004
        • Woolf C.J.
        Evidence for a central component of post-injury pain hypersensitivity.
        Nature. 1983; 306: 686-688
        • Woolf C.J.
        • Salter M.W.
        Neuronal plasticity: Increasing the gain in pain.
        Science. 2000; 288: 1765-1769
        • Zanjani T.M.
        • Sabetkasaei M.
        • Mosaffa N.
        • Manaheji H.
        • Labibi F.
        • Farokhi B.
        Suppression of interleukin-6 by minocycline in a rat model of neuropathic pain.
        Eur J Pharmacol. 2006; 538: 66-72
        • Zhao P.
        • Waxman S.G.
        • Hains B.C.
        Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury.
        J Neurosci. 2007; 27: 2357-2368