Advertisement

High-Intensity Extended Swimming Exercise Reduces Pain-Related Behavior in Mice: Involvement of Endogenous Opioids and the Serotonergic System

  • Leidiane Mazzardo-Martins
    Affiliations
    Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author
  • Daniel F. Martins
    Affiliations
    Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author
  • Rodrigo Marcon
    Affiliations
    Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author
  • Ubirajara D. dos Santos
    Affiliations
    Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil

    Departamento de Naturologia, Universidade do Sul de Santa Catarina, Pedra Branca, Palhoça, SC, Brazil
    Search for articles by this author
  • Breno Speckhann
    Affiliations
    Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author
  • Vinícius M. Gadotti
    Affiliations
    Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author
  • André Roberto Sigwalt
    Affiliations
    Departamento de Educação Física, Centro de Desportos, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author
  • Luiz Guilherme A. Guglielmo
    Affiliations
    Departamento de Educação Física, Centro de Desportos, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author
  • Adair Roberto Soares Santos
    Correspondence
    Address reprint requests to Dr Adair R.S. Santos, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil.
    Affiliations
    Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade, Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil

    Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
    Search for articles by this author

      Abstract

      The present study examined the hyponociceptive effect of swimming exercise in a chemical behavioral model of nociception and the mechanisms involved in this effect. Male mice were submitted to swimming sessions (30 min/d for 5 days). Twenty-four hours after the last session, we noticed that swimming exercise decreased the number of abdominal constriction responses caused by acetic acid compared with the nonexercised group. The hyponociception caused by exercise in the acetic acid test was significantly attenuated by intraperitoneal (i.p.) pretreatment of mice with naloxone (a nonselective opioid receptor antagonist, 1 mg/kg), ρ-chlorophenylalanine methyl ester (PCPA, an inhibitor of serotonin synthesis, 100 mg/kg once a day for 4 consecutive days), and by bilateral adrenalectomy. Collectively, the present results provide experimental evidences indicating for the first time that high-intensity extended swimming exercise reduces pain-related behavior in mice. The mechanisms involve an interaction with opioid and serotonin systems. Furthermore, endogenous opioids released by adrenal glands probably are involved in this effect.

      Perspective

      Our results indicate that high-intensity extended exercise endogenously controls acute pain by activation of opioidergic and serotonergic pathways. Furthermore, these results support the use of exercise as a nonpharmacological approach for the management of acute pain.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • aan het Rot M.
        • Collins K.A.
        • Fitterling H.L.
        Physical exercise and depression.
        Mt Sinai J Med. 2009; 76: 204-214
        • Alhaider A.A.
        • Lei S.Z.
        • Wilcox G.L.
        Spinal 5-HT3 receptor-mediated antinociception: Possible release of GABA.
        J Neurosci. 1991; 11: 1881-1888
        • Basbaum A.I.
        • Fields H.L.
        Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry.
        Annu Rev Neurosci. 1984; 7: 309-338
        • Beneke R.
        Methodological aspects of maximal lactate steady state: Implications for performance testing.
        Eur J Appl Physiol. 2003; 89: 204-214
        • Collier H.O.J.
        • Dinneen J.C.
        • Johnson C.A.
        • Schneider C.
        The abdominal constriction response and its suppression by analgesic drugs in the mouse.
        Br J Pharmacol Chemother. 1968; 32: 295-310
        • Cotman C.W.
        • Berchtold N.C.
        • Christie L.A.
        Exercise builds brain health: Key roles of grown factor cascades and inflammation.
        Trends Neurosci. 2007; 30: 467-472
        • Davranche K.
        • McMorris T.
        Specific effects of acute moderate exercise on cognitive control.
        Brain Cogn. 2009; 69: 565-570
        • Dickhuth H.H.
        • Yin L.
        • Niess A.
        • Röcker K.
        • Mayer F.
        • Heitkamp H.-C.
        • Horstmann T.
        Vantilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: Relationship and reproducibility.
        Int J Sports Med. 1999; 20: 122-127
        • Droste C.
        • Meyer-Blankenburg M.
        • Greenlee M.W.
        • Roskamm H.
        Effect of physical exercise on pain thresholds and plasma beta-endorphins in patients with silent and symptomatic myocardial ischemia.
        Eur Heart J. 1988; 9: 25-33
        • Dunn A.L.
        • Reigle T.G.
        • Youngstedt S.D.
        • Armstrong R.B.
        • Dishman R.K.
        Brain norepinephrine and metabolites after treadmill training and wheel running in rats.
        Med Sci Sports Exerc. 1996; 28: 204-209
        • Eckeli A.L.
        • Dach F.
        • Rodrigues A.L.
        Acute treatments with GMP produces antidepressant-like effects in mice.
        Neuroreport. 2000; 11: 1839-1843
        • Farrell P.A.
        Exercise and endorphins: Male responses.
        Med Sci Sports Exerc. 1985; 17: 89-93
        • Faude O.
        • Meyer T.
        • Scharhag J.
        • Weins F.
        • Urhausen A.
        • Kindermann W.
        Volume vs intensity in the training of competitive swimmers.
        Int J Sports Med. 2008; 29: 906-912
        • Feng Y.
        • Cui M.
        • Willis W.D.
        Effect of anticonvulsant gabapentin on visceral nociception and its relationship with amino acid neurotransmitters released from spinal cord.
        Beijing Da Xue Xue Bao. 2003; 35: 307-310
        • Fields H.L.
        • Heinricher M.M.
        • Mason P.
        Neurotransmitters in nociceptive modulatory circuits.
        Annu Rev Neurosci. 1991; 14: 219-245
        • Goldfarb A.H.
        • Hatfield B.D.
        • Armstrong D.
        • Potts J.
        Plasma beta-endorphin concentration: Response to intensity and duration of exercise.
        Med Sci Sports Exerc. 1990; 22: 241-244
        • Goldfarb A.H.
        • Hatfield B.D.
        • Sforzo G.A.
        • Flynn M.G.
        Serum [beta]-endorphin levels during a graded exercise test to exhaustion.
        Med Sci Sports Exerc. 1987; 19: 78-82
        • Goldfarb A.H.
        • Jamurtas A.Z.
        Beta-endorphin response to exercise: An update.
        Sports Med. 1997; 24: 8-16
        • Goldfarb A.H.
        • Jamurtas A.Z.
        • Kamimori G.H.
        • Hegde S.
        • Otterstetter R.
        • Brown D.A.
        Gender effect on beta-endorphin response to exercise.
        Med Sci Sports Exerc. 1998; 30: 1672-1676
        • Gowans S.E.
        • de Hueck A.
        Effectiveness of exercise in management of fibromyalgia.
        Curr Opin Rheumatol. 2004; 16: 138-142
        • Greenwood B.N.
        • Fleshner M.
        Exercise, learned helplessness and the stress-resistant brain.
        Neuromol Med. 2008; 10: 81-98
        • Hayes K.
        • Sprague S.
        • Guo M.
        • Davis W.
        • Friedman A.
        • Kumar A.
        • Jimenez D.F.
        • Ding Y.
        Forced, not voluntary, exercise effectively induces neuroprotection in stroke.
        Acta Neuropathol. 2008; 115: 289-296
        • Hill A.V.
        • Lupton H.
        Muscular exercise, lactic acid and the supply and utilization of oxygen.
        Q J Med. 1923; 16: 135-1371
        • Hoffman M.D.
        • Shepanski M.A.
        • Mackenzie S.P.
        • Clifford P.S.
        Experimentally induced pain perception is acutely reduced by aerobic exercise in people with chronic low back pain.
        J Rehabil Res Dev. 2005; 42: 183-190
        • Hoffmann P.
        • Skarphedinsson J.O.
        • Delle M.
        • Thorén P.
        Electrical stimulation of the gastrocnemius muscle in the spontaneously hypertensive rat increases the pain threshold: Role of different serotonergic receptors.
        Acta Physiol Scand. 1990; 138: 125-131
        • Hohmann A.G.
        • Suplita R.L.
        • Bolton N.M.
        • Neely M.H.
        • Fegley D.
        • Mangieri R.
        • Krey J.F.
        • Walker J.M.
        • Holmes P.V.
        • Crystal J.D.
        • Duranti A.
        • Tontini A.
        • Mor M.
        • Tarzia G.
        • Piomelli D.
        An endocannabinoid mechanism for stress-induced analgesia.
        Nature. 2005; 435: 1108-1112
        • Ikeda Y.
        • Ueno A.
        • Naraba H.
        • Oh-Ishi S.
        Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice.
        Life Sci. 2001; 69: 2911-2919
        • Imura H.
        • Nakai Y.
        “Endorphins” in pituitary and other tissues.
        Annu Rev Physiol. 1981; 43: 265-278
        • Janal M.N.
        • Colt E.W.
        • Clark W.C.
        • Glusman M.
        Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: Effects of naloxone.
        Pain. 1984; 19: 13-25
        • Kemppainen P.
        • Hamalainen O.
        • Kononen M.
        Different effects of physical exercise on cold pain sensitivity in fighter pilots with and without the history of acute in-flight neck pain attacks.
        Med Sci Sports Exerc. 1998; 30: 577-582
        • Kim J.
        • Arias E.B.
        • Cartee G.D.
        Effects of gender and prior swim exercise on glucose uptake in isolated skeletal muscles from mice.
        J Physiol Sci. 2006; 56: 305-312
        • Koltyn K.F.
        Analgesia following exercise: A review.
        Sports Med. 2000; 29: 85-98
        • Koltyn K.F.
        • Umeda M.
        Exercise, hypoalgesia and blood pressure.
        Sports Med. 2006; 36: 207-214
        • Kuphal K.E.
        • Fibuch E.E.
        • Taylor B.K.
        Extended swimming exercise reduces inflammatory and peripheral neurophatic pain in rodents.
        J Pain. 2007; 8: 989-997
        • Langenfeld M.E.
        • Hart L.S.
        • Kao P.C.
        Plasma [beta]-endorphin responses to one hour bicycling and running at 60% [latin capital V with dot above] O2 max.
        Med Sci Sports Med. 1987; 19: 83-86
        • Lucena G.M.
        • Gadotti V.M.
        • Maffi L.C.
        • Silva G.S.
        • Azevedo M.S.
        • Santos A.R.S.
        Antinociceptive and anti-inflammatory properties from the bulbs of Cipura paludosa Aubl.
        J Ethnopharmacol. 2007; 112: 19-25
        • Mader A.
        • Heck H.
        A theory of metabolic origin of the “anaerobic threshold.”.
        Int J Sports Med. 1986; 7: 45-65
        • Mendes G.L.
        • Santos A.R.S.
        • Malheiros A.
        • Filho V.C.
        • Yunes R.A.
        • Calixto J.B.
        Assessment of mechanisms involved in antinociception caused by sesquiterpene polygodial.
        J Pharmacol Exp Ther. 2000; 292: 164-172
        • Millan M.J.
        Descending control of pain.
        Prog Neurobiol. 2002; 66: 355-474
        • Mujika I.
        • Padilla S.
        Cardiorespiratory and metabolic characteristics of detraining in humans.
        Med Sci Sports Exerc. 2001; 33: 413-421
        • Newsholme E.A.
        • Blomslrand E.
        Tryptophan 5-hydroxytryptamine and a possible explanation for central fatigue.
        in: Gandevia S.C. Enoka H.M. McComas A.J. Fatigue: Neural and Muscular Mechanisms: Advances in Medicine and Biology, Vol. 20. Plenum Press, New York & London1995 (pp 384-315)
        • North R.A.
        • Egan T.M.
        Actions and distributions of opioid peptides in peripheral tissues.
        Br Med Bull. 1983; 39: 71-75
        • O'Connor P.J.
        • Cook D.B.
        Exercise and pain: The neurobiology, measurement, and laboratory study of pain in relation to exercise in humans.
        Exerc Sport Sci Rev. 1999; 27: 119-166
        • Olausson B.
        • Eriksson E.
        • Ellmarker L.
        • Rydenhag B.
        • Shyu B.C.
        • Andersson S.A.
        Effects of naloxone on dental pulp pain threshold following muscle exercise and low frequency transcutaneous nerve stimulation: A comparative study in man.
        Acta Physiol Scand. 1986; 126: 299-305
        • Péronnet F.
        • Aguilaniu B.
        Lactic acid buffering, non-metabolic CO2 and exercise hyperventilation: A critical reappraisal.
        Respir Physiol Neurobiol. 2006; 150: 4-18
        • Pierce E.F.
        • Eastman N.W.
        • Tripathi H.L.
        • Olson K.G.
        • Dewey W.L.
        β-Endorphin response to endurance exercise: Relationship to exercise dependence.
        Percept Mot Skills. 1993; 77: 167-770
        • Pierce D.
        • Kuppart I.
        • Harry D.
        Urinary epinephrine and norepinephrine levels in women athletes during training and competition.
        Eur J Appl Occup Physiol. 1979; 36: 1-6
        • Quintero L.
        • Moreno M.
        • Avila C.
        • Arcaya J.
        • Maixner W.
        • Suarez-Roca H.
        Long-lasting delayed hyperalgesia after subchronic swim stress.
        Pharmacol Biochem Behav. 2000; 67: 449-458
        • Ribeiro R.A.
        • Vale M.V.
        • Thomazzi S.M.
        • Paschoalato A.B.P.
        • Poole S.
        • Ferreira S.H.
        • Cunha F.Q.
        Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice.
        Eur J Pharmacol. 2000; 387: 111-118
        • Rodrigues A.L.
        • da Silva G.L.
        • Mateussi A.S.
        • Fernandes E.S.
        • Miguel O.G.
        • Yunes R.A.
        • Calixto J.B.
        • Santos A.R.S.
        Involvement of monoaminergic system in the antidepressant-like effect of the hydroalcoholic extract of Siphocampylus verticillatus.
        Life Sci. 2002; 70: 1347-1358
        • Rosa A.O.
        • Lin J.
        • Calixto J.B.
        • Santos A.R.S.
        • Rodrigues A.L.
        Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice.
        Behav Brain Res. 2003; 144: 87-93
        • Santos A.R.S.
        • Gadotti V.M.
        • Oliveira G.
        • Tibola D.
        • Paszuk A.F.
        • Neto A.
        • Spindola H.M.
        • Souza M.M.
        • Rodrigues A.L.
        • Calixto J.B.
        Mechanisms involved in the antinociception caused by agmatine in mice.
        Neuropharmacol. 2005; 48: 1021-1034
        • Santos A.R.S.
        • Miguel O.G.
        • Yunes O.G.
        • Calixto J.B.
        Antinociceptive properties of the new alkaloid, cis-8, 10-di-Npropyllobelidiol hydrochloride dihydrate isolated from Siphocampylus verticillatus: Evidence for the mechanism of action.
        J Pharmacol Exp Ther. 1999; 289: 417-426
        • Schwarz L.
        • Kindermann W.
        Changes in beta-endorphin levels in response to aerobic and anaerobic exercise.
        Sports Med. 1992; 13: 25-36
        • Smiderle F.R.
        • Olsen L.M.
        • Carbonero E.R.
        • Baggio C.H.
        • Freitas C.S.
        • Marcon R.
        • Santos A.R.S.
        • Gorin P.A.
        • Iacomini M.
        Anti-inflammatory and analgesic properties in a rodent model of a (1-3), (1-6)- linked beta-glucan isolated from Pleurotus pulmonarius.
        Eur J Pharmacol. 2008; 597: 86-91
      1. Stein C, ed: Opioids in Pain Control: Basic and Clinical Aspects. Cambridge, United Kingdom, Cambridge University Press, 1999

        • Terman G.W.
        • Morgan M.J.
        • Liebeskind J.C.
        Opioid and non-opioid stress analgesia from cold water swim: Importance of stress severity.
        Brain Res. 1986; 372: 167-171
        • Urhausen A.
        • Coen B.
        • Weiler B.
        • Kindermann W.
        Individual anaerobic threshold and maximum lactate steady state.
        Int J Sports Med. 1993; 14: 134-139
        • Vaz Z.R.
        • Filho V.C.
        • Yunes R.A.
        • Calixto J.B.
        Antinociceptive action of 2- (4-bromobenzoyl)-3-methyl-4,6-dimethoxy benzofuran, a novel Xanthoxyline derivative on chemical and thermal models of nociception in mice.
        J Phamacol Exp Ther. 1996; 278: 304-312
        • Vega S.R.
        • Strüder H.K.
        • Wahrmann B.V.
        • Schmidt A.
        • Bloch W.
        • Hollmann W.
        Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans.
        Brain Res. 2006; 1121: 59-65
        • Viveros O.H.
        • Diliberto Jr., E.J.
        • Hazum E.
        • Chang K.J.
        Opiate-like materials in the adrenal medulla: Evidence for storage and secretion with catecholamines.
        Mol Pharmacol. 1979; 16: 1101-1108
        • Voltarelli F.A.
        • Gobatto C.A.
        • Mello M.A.R.
        Determination of anaerobic threshold in rats using the lactate minimum test.
        Braz J Med Biol Res. 2002; 35: 1389-1394
        • Willow M.
        • Carmody J.
        • Carroll P.
        The effects of swimming in mice on pain perception and sleeping time in response to hypnotic drugs.
        Life Sci. 1980; 26: 219-224
        • Wright A.
        • Sluka K.A.
        Nonpharmacological treatments for musculoskeletal pain.
        Clin J Pain. 2001; 17: 33-46
        • Yoshimasa T.
        • Nakao K.
        • Ohtsuki H.
        • Li S.
        • Imura H.
        Methionine-enkephalin and leucine-enkephalin in human sympathoadrenal system and pheochromocytoma.
        J Clin Invest. 1982; 69: 643-650
        • Zhu C.Z.
        • Wilson S.G.
        • Mikusa J.P.
        • Wismer C.T.
        • Gauvin D.M.
        • Lynch 3rd, J.J.
        • Wade C.L.
        • Decker M.W.
        • Honore P.
        Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities.
        Eur J Pharmacol. 2004; 506: 107-118
        • Zimmermann M.
        Ethical guidelines for investigations of experimental pain in conscious animals.
        Pain. 1983; 16: 109-110