Advertisement

Transcranial DC Stimulation in Fibromyalgia: Optimized Cortical Target Supported by High-Resolution Computational Models

      Abstract

      In this study we aimed to determine current distribution and short-term analgesic effects of transcranial direct current stimulation (tDCS) in fibromyalgia using different electrode montages. For each electrode montage, clinical effects were correlated with predictions of induced cortical current flow using magnetic resonance imaging–derived finite element method head model. Thirty patients were randomized into 5 groups (Cathodal-M1 [primary motor cortex], Cathodal-SO [supra-orbital area], Anodal-M1, Anodal-SO, and Sham) to receive tDCS application (2 mA, 20 minutes) using an extracephalic montage. Pain was measured using a visual numerical scale (VNS), pressure pain threshold (PPT), and a body diagram (BD) evaluating pain area. There was significant pain reduction in cathodal-SO and anodal-SO groups indexed by VNS. For PPT there was a trend for a similar effect in anodal-SO group. Computer simulation indicated that the M1-extracephalic montage produced dominantly temporo-parietal current flow, consistent with lack of clinical effects with this montage. Conversely, the SO-extracephalic montage produced current flow across anterior prefrontal structures, thus supporting the observed analgesic effects. Our clinical and modeling findings suggest that electrode montage, considering both electrodes, is critical for the clinical effects of M1-tDCS as electric current needs to be induced in areas associated with the pain matrix. These results should be taken into consideration for the design of pain tDCS studies.

      Perspective

      Results in this article support that electrode montage is a critical factor to consider for the clinical application of tDCS for pain control, as there is an important correlation between the location of induced electrical current and tDCS-induced analgesic effects.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barbas H.
        Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices.
        Brain Res Bull. 2000; 52: 319-330
        • Boggio P.S.
        • Rigonatti S.P.
        • Ribeiro R.B.
        • Myczkowski M.L.
        • Nitsche M.A.
        • Pascual-Leone A.
        • Fregni F.
        A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression.
        Int J Neuropsychopharmacol. 2008; 11: 249-254
        • Boggio P.S.
        • Sultani N.
        • Fecteau S.
        • Merabet L.
        • Mecca T.
        • Pascual-Leone A.
        • Basaglia A.
        • Fregni F.
        Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: A double-blind, sham-controlled study.
        Drug Alcohol Depend. 2008; 92: 55-60
        • Boggio P.S.
        • Zaghi S.
        • Lopes M.
        • Fregni F.
        Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers.
        Eur J Neurol. 2008; 15: 1124-1130
        • Borckardt J.J.
        • Smith A.R.
        • Reeves S.T.
        • Madan A.
        • Shelley N.
        • Branham R.
        • Nahas Z.
        • George M.S.
        A pilot study investigating the effects of fast left prefrontal rTMS on chronic neuropathic pain.
        Pain Med. 2009; 10: 840-849
        • Borckardt J.J.
        • Smith A.R.
        • Reeves S.T.
        • Weinstein M.
        • Kozel F.A.
        • Nahas Z.
        • Shelley N.
        • Branham R.K.
        • Thomas K.J.
        • George M.S.
        Fifteen minutes of left prefrontal repetitive transcranial magnetic stimulation acutely increases thermal pain thresholds in healthy adults.
        Pain Res Manag. 2007; 12: 287-290
        • Cardinal R.N.
        • Parkinson J.A.
        • Hall J.
        • Everitt B.J.
        Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex.
        Neurosci Biobehav Rev. 2002; 263: 321-352
        • Datta A.
        • Bansal V.
        • Diaz J.
        • Patel J.
        • Reato D.
        • Bikson M.
        Gyri -precise head model of transcranial DC stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad.
        Brain Stimulat. 2009; 2: 201-207
        • Davidson R.J.
        Anxiety and affective style: Role of prefrontal cortex and amygdala.
        Biol Psychiatry. 2002; 51: 68-80
        • de Leeuw R.
        • Albuquerque R.
        • Okeson J.
        • Carlson C.
        The contribution of neuroimaging techniques to the understanding of supraspinal pain circuits: Implications for orofacial pain.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 100: 308-314
        • Fecteau S.
        • Pascual-Leone A.
        • Zald D.H.
        • Liguori P.
        • Theoret H.
        • Boggio P.S.
        • Fregni F.
        Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making.
        J Neurosci. 2007; 27: 6212-6218
        • Fregni F.
        • Boggio P.S.
        • Lima M.C.
        • Ferreira M.J.
        • Wagner T.
        • Rigonatti S.P.
        • Castro A.W.
        • Souza D.R.
        • Riberto M.
        • Freedman S.D.
        • Nitsche M.A.
        • Pascual-Leone A.
        A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury.
        Pain. 2006; 122: 197-209
        • Fregni F.
        • Gimenes R.
        • Valle A.C.
        • Ferreira M.J.
        • Rocha R.R.
        • Natalle L.
        • Bravo R.
        • Rigonatti S.P.
        • Freedman S.D.
        • Nitsche M.A.
        • Pascual-Leone A.
        • Boggio P.S.
        A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia.
        Arthritis Rheum. 2006; 54: 3988-3998
        • Fregni F.
        • Orsati F.
        • Pedrosa W.
        • Fecteau S.
        • Tome F.A.
        • Nitsche M.A.
        • Mecca T.
        • Macedo E.C.
        • Pascual-Leone A.
        • Boggio P.S.
        Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods.
        Appetite. 2008; 51: 34-41
        • Homan R.W.
        • Herman J.
        • Purdy P.
        Cerebral location of international 10-20 system electrode placement.
        Electroencephalogr Clin Neurophysiol. 1987; 66: 376-382
        • Jensen M.P.
        • Hakimian S.
        • Sherlin L.H.
        • Fregni F.
        New insights into neuromodulatory approaches for the treatment of pain.
        J Pain. 2008; 9: 193-199
        • Lefaucheur J.P.
        New insights into the therapeutic potential of non-invasive transcranial cortical stimulation in chronic neuropathic pain.
        Pain. 2006; 122: 11-13
        • Lefaucheur J.P.
        • Drouot X.
        • Menard-Lefaucheur I.
        • Zerah F.
        • Bendib B.
        • Cesaro P.
        • Keravel Y.
        • Nguyen J.P.
        Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain.
        J Neurol Neurosurg Psychiatry. 2004; 75: 612-616
        • Lefaucheur J.P.
        • Drouot X.
        • Nguyen J.P.
        Interventional neurophysiology for pain control: Duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex.
        Neurophysiol Clin. 2001; 31: 247-252
        • Lima M.C.
        • Fregni F.
        Motor cortex stimulation for chronic pain: Systematic review and meta-analysis of the literature.
        Neurology. 2008; 70: 2329-2337
        • Millan M.J.
        Descending control of pain.
        Prog Neurobiol. 2002; 66: 355-474
        • Moliadze V.
        • Antal A.
        • Paulus W.
        Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes.
        Clin Neurophysiol. 2010 Jun 15; ([Epub ahead of print])
        • Morgan M.A.
        • Romanski L.M.
        • LeDoux J.E.
        Extinction of emotional learning: Contribution of medial prefrontal cortex.
        Neurosci Lett. 1993; 163: 109-113
        • Mori F.
        • Codeca C.
        • Kusayanagi H.
        • Monteleone F.
        • Buttari F.
        • Fiore S.
        • Bernardi G.
        • Koch G.
        • Centonze D.
        Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis.
        J Pain. 2010; 11: 436-442
        • Nahmias F.
        • Debes C.
        • de Andrade D.C.
        • Mhalla A.
        • Bouhassira D.
        Diffuse analgesic effects of unilateral repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers.
        Pain. 2009; 147: 224-232
        • Nitsche M.A.
        • Liebetanz D.
        • Lang N.
        • Antal A.
        • Tergau F.
        • Paulus W.
        Safety criteria for transcranial direct current stimulation (tDCS) in humans (author reply 2-3).
        Clin Neurophysiol. 2003; 114: 2220-2222
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639
        • Passard A.
        • Attal N.
        • Benadhira R.
        • Brasseur L.
        • Saba G.
        • Sichere P.
        • Perrot S.
        • Januel D.
        • Bouhassira D.
        Effects of unilateral repetitive transcranial magnetic stimulation of the motor cortex on chronic widespread pain in fibromyalgia.
        Brain. 2007; 130: 2661-2670
        • Rempel-Clower N.L.
        • Barbas H.
        Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey.
        J Comp Neurol. 1998; 398: 393-419
        • Roizenblatt S.
        • Fregni F.
        • Gimenez R.
        • Wetzel T.
        • Rigonatti S.P.
        • Tufik S.
        • Boggio P.S.
        • Valle A.C.
        Site-specific effects of transcranial direct current stimulation on sleep and pain in fibromyalgia: A randomized, sham-controlled study.
        Pain Pract. 2007; 7: 297-306
        • Sampson S.M.
        • Rome J.D.
        • Rummans T.A.
        Slow-frequency rTMS reduces fibromyalgia pain.
        Pain Med. 2006; 7: 115-118
        • Simpson Jr., J.R.
        • Drevets W.C.
        • Snyder A.Z.
        • Gusnard D.A.
        • Raichle M.E.
        Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety.
        Proc Natl Acad Sci U S A. 2001; 98: 688-693
        • Wolfe F.
        • Smythe H.A.
        • Yunus M.B.
        • Bennett R.M.
        • Bombardier C.
        • Goldenberg D.L.
        • Tugwell P.
        • Campbell S.M.
        • Abeles M.
        • Clark P.
        The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee.
        Arthritis Rheum. 1990; 33: 160-172