Advertisement

Evidence That Spinal Astrocytes but Not Microglia Contribute to the Pathogenesis of Paclitaxel-Induced Painful Neuropathy

Published:January 30, 2012DOI:https://doi.org/10.1016/j.jpain.2011.12.002

      Abstract

      Paclitaxel often induces persistent painful neuropathy as its most common treatment-limiting side effect. Little is known concerning the underlying mechanisms. Given the prominent role of glial cells in many types of neuropathic pain, we investigated here the morphological and functional changes of spinal astrocytes and microglia in a rat model of paclitaxel-induced neuropathy. Immunohistochemistry, western blotting, and real-time polymerase chain reaction were performed with samples from 109 rats up to 28 days after paclitaxel treatment. Paclitaxel (2 mg/kg, i.p.) induced a rapid and persistent activation of spinal astrocytes assessed using glial fibrillary acidic protein, but not apparent activation of microglia assessed using OX42, Iba-1, and phosphorylated p38. In the context of astocyte activation, there was a significant downregulation of glial glutamate transporters GLAST and GLT-1 in spinal dorsal horn. The activation of spinal astrocytes by paclitaxel was not associated with expression of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, or interleukin-6 in spinal dorsal horn. Systemic treatment with minocycline (50 mg/kg, i.p.) prevented activation of astrocytes and downregulation of glial glutamate transporters in spinal dorsal horn induced by paclitaxel. These data suggest the involvement of spinal astrocytes but not microglia in the pathogenesis of paclitaxel-induced neuropathy.

      Perspective

      Spinal astrocytes and/or glial glutamate transporters could be new therapeutic targets for paclitaxel-induced painful neuropathy.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balayssac D.
        • Ferrier J.
        • Descoeur J.
        • Ling B.
        • Pezet D.
        • Eschalier A.
        • Authier N.
        Chemotherapy-induced peripheral neuropathies: From clinical relevance to preclinical evidence.
        Expert Opin Drug Saf. 2011; 10: 407-417
        • Beggs S.
        • Salter M.W.
        Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury.
        Brain Behav Immun. 2007; 21: 624-633
        • Boyette-Davis J.
        • Dougherty P.M.
        Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline.
        Exp Neurol. 2011; 229: 353-357
        • Boyette-Davis J.
        • Xin W.
        • Zhang H.
        • Dougherty P.M.
        Intraepidermal nerve fiber loss corresponds to the development of Taxol-induced hyperalgesia and can be prevented by treatment with minocycline.
        Pain. 2011; 152: 308-313
        • Cata J.P.
        • Weng H.R.
        • Chen J.H.
        • Dougherty P.M.
        Altered discharges of spinal wide dynamic range neurons and down-regulation of glutamate transporter expression in rats with paclitaxel-induced hyperalgesia.
        Neuroscience. 2006; 138: 329-338
        • Cata J.P.
        • Weng H.R.
        • Dougherty P.M.
        The effects of thalidomide and minocycline on taxol-induced hyperalgesia in rats.
        Brain Res. 2008; 1229: 100-110
        • Cavaletti G.
        • Cavaletti E.
        • Oggioni N.
        • Sottani C.
        • Minoia C.
        • D’Incalci M.
        • Zucchetti M.
        • Marmiroli P.
        • Tredici G.
        Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration.
        Neurotoxicol. 2000; 21: 389-394
        • Cavaletti G.
        • Marmiroli P.
        Chemotherapy-induced peripheral neurotoxicity.
        Nat Rev Neurol. 2010; 6: 657-666
        • Dina O.A.
        • Chen X.
        • Reichling D.
        • Levine J.D.
        Role of protein kinase C[epsi] and protein kinase A in a model of paclitaxel-induced painful peripheral neuropathy in the rat.
        Neuroscience. 2001; 108: 507-515
        • Dougherty P.M.
        • Cata J.P.
        • Cordella J.V.
        • Burton A.
        • Weng H.-R.
        Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients.
        Pain. 2004; 109: 132-142
        • Du Y.
        • Ma Z.
        • Lin S.
        • Dodel R.C.
        • Gao F.
        • Bales K.R.
        • Triarhou L.C.
        • Chernet E.
        • Perry K.W.
        • Nelson D.L.
        • Luecke S.
        • Phebus L.A.
        • Bymaster F.P.
        • Paul S.M.
        Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease.
        Proc Natl Acad Sci U S A. 2001; 98: 14669-14674
        • Eroglu C.
        • Barres B.A.
        Regulation of synaptic connectivity by glia.
        Nature. 2010; 468: 223-231
        • Gao Y.J.
        • Ji R.R.
        Targeting astrocyte signaling for chronic pain.
        Neurotherapeutics. 2010; 7: 482-493
        • Garwood C.J.
        • Cooper J.D.
        • Hanger D.P.
        • Noble W.
        Anti-inflammatory impact of minocycline in a mouse model of tauopathy.
        Front Psychiatry. 2010; 1: 136
        • Garwood C.J.
        • Pooler A.M.
        • Atherton J.
        • Hanger D.P.
        • Noble W.
        Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture.
        Cell Death Dis. 2011; 2: e167
        • Glantz M.J.
        • Choy H.
        • Kearns C.M.
        • Mills P.C.
        • Wahlberg L.U.
        • Zuhowski E.G.
        • Calabresi P.
        • Egorin M.J.
        Paclitaxel disposition in plasma and central nervous systems of humans and rats with brain tumors.
        J Natl Cancer Inst. 1995; 87: 1077-1081
        • Goetschy J.F.
        • Ulrich G.
        • Aunis D.
        • Ciesielski-Treska J.
        The organization and solubility properties of intermediate filaments and microtubules of cortical astrocytes in culture.
        J Neurocytol. 1986; 15: 375-387
        • Guo W.
        • Wang H.
        • Watanabe M.
        • Shimizu K.
        • Zou S.
        • LaGraize S.C.
        • Wei F.
        • Dubner R.
        • Ren K.
        Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain.
        J Neurosci. 2007; 27: 6006-6018
        • Heimans J.J.
        • Vermorken J.B.
        • Wolbers J.G.
        • Eeltink C.M.
        • Meijer O.W.
        • Taphoorn M.J.
        • Beijnen J.H.
        Paclitaxel (Taxol) concentrations in brain tumor tissue.
        Ann Oncol. 1994; 5: 951-953
        • Ji R.R.
        • Samad T.A.
        • Jin S.X.
        • Schmoll R.
        • Woolf C.J.
        p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia.
        Neuron. 2002; 36: 57-68
        • Jin S.X.
        • Zhuang Z.-Y.
        • Woolf C.J.
        • Ji R.-R.
        p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain.
        J Neurosci. 2003; 23: 4017-4022
        • Kim S.H.
        • Chung J.M.
        An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat.
        Pain. 1992; 50: 355-364
        • Ledeboer A.
        • Jekich B.M.
        • Sloane E.M.
        • Mahoney J.H.
        • Langer S.J.
        • Milligan E.D.
        • Martin D.
        • Maier S.F.
        • Johnson K.W.
        • Leinwand L.A.
        • Chavez R.A.
        • Watkins L.R.
        Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats.
        Brain Behav Immun. 2007; 21: 686-698
        • Ledeboer A.
        • Sloane E.M.
        • Milligan E.D.
        • Frank M.G.
        • Mahony J.H.
        • Maier S.F.
        • Watkins L.R.
        Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation.
        Pain. 2005; 115: 71-83
        • Liaw W.J.
        • Stephens Jr., R.L.
        • Binns B.C.
        • Chu Y.
        • Sepkuty J.P.
        • Johns R.A.
        • Rothstein J.D.
        • Tao Y.X.
        Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord.
        Pain. 2005; 115: 60-70
        • Loprinzi C.L.
        • Reeves B.N.
        • Dakhil S.R.
        • Sloan J.A.
        • Wolf S.L.
        • Burger K.N.
        • Kamal A.
        • Le-Lindqwister N.A.
        • Soori G.S.
        • Jaslowski A.J.
        • Novotny P.J.
        • Lachance D.H.
        Natural history of paclitaxel-associated acute pain syndrome: Prospective cohort study NCCTG N08C1.
        J Clin Oncol. 2011; 29: 1472-1478
        • Milligan E.D.
        • Watkins L.R.
        Pathological and protective roles of glia in chronic pain.
        Nat Rev Neurosci. 2009; 10: 23-36
        • Miyoshi K.
        • Obata K.
        • Kondo T.
        • Okamura H.
        • Noguchi K.
        Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury.
        J Neurosci. 2008; 28: 12775-12787
        • Nie H.
        • Weng H.R.
        Glutamate transporters prevent excessive activation of NMDA receptors and extrasynaptic glutamate spillover in the spinal dorsal horn.
        J Neurophysiol. 2009; 101: 2041-2051
        • Nie H.
        • Weng H.R.
        Impaired glial glutamate uptake induces extrasynaptic glutamate spillover in the spinal sensory synapses of neuropathic rats.
        J Neurophysiol. 2010; 103: 2570-2580
        • Nie H.
        • Zhang H.
        • Weng H.R.
        Minocycline prevents impaired glial glutamate uptake in the spinal sensory synapses of neuropathic rats.
        Neuroscience. 2010; 170: 901-912
        • Palma C.
        • Minghetti L.
        • Astolfi M.
        • Ambrosini E.
        • Silberstein F.C.
        • Manzini S.
        • Levi G.
        • Aloisi F.
        Functional characterization of substance P receptors on cultured human spinal cord astrocytes: Synergism of substance P with cytokines in inducing interleukin-6 and prostaglandin E2 production.
        GLIA. 1997; 21: 183-193
        • Peters C.M.
        • Jimenez-Andrade J.M.
        • Kuskowski M.A.
        • Ghilardi J.R.
        • Mantyh P.W.
        An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat.
        Brain Res. 2007; 1168: 46-59
        • Polomano R.C.
        • Mannes A.J.
        • Clark U.S.
        • Bennett G.J.
        A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel.
        Pain. 2001; 94: 293-304
        • Raghavendra V.
        • Tanga F.
        • DeLeo J.A.
        Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy.
        J Pharmacol Exp Ther. 2003; 306: 624-630
        • Ren K.
        • Dubner R.
        Interactions between the immune and nervous systems in pain.
        Nat Med. 2010; 16: 1267-1276
        • Schäfers M.
        • Svensson C.I.
        • Sommer C.
        • Sorkin L.S.
        Tumor necrosis factor-a induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons.
        J Neurosci. 2003; 23: 2517-2521
        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative C(T) method.
        Nat Protoc. 2008; 3: 1101-1108
        • Scholz J.
        • Woolf C.J.
        The neuropathic pain triad: Neurons, immune cells and glia.
        Nat Neurosci. 2007; 10: 1361-1368
        • Sorci G.
        • Agneletti A.L.
        • Bianchi R.
        • Donato R.
        Association of S100B with intermediate filaments and microtubules in glial cells.
        Biochim Biophys Acta. 1998; 1448: 277-289
        • Sung B.
        • Lim G.
        • Mao J.
        Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats.
        J Neurosci. 2003; 23: 2899-2910
        • Svensson C.I.
        • Schafers M.
        • Jones T.L.
        • Powell H.
        • Sorkin L.S.
        Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38.
        Neurosci Lett. 2005; 379: 209-213
        • Tikka T.
        • Fiebich B.L.
        • Goldsteins G.
        • Keinanen R.
        • Koistinaho J.
        Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia.
        J Neurosci. 2001; 21: 2580-2588
        • Wang X.
        • Zhu S.
        • Drozda M.
        • Zhang W.
        • Stavrovskaya I.G.
        • Cattaneo E.
        • Ferrante R.J.
        • Kristal B.S.
        • Friedlander R.M.
        Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease.
        Proc Natl Acad Sci U S A. 2003; 100: 10483-10487
        • Wei F.
        • Guo W.
        • Zou S.
        • Ren K.
        • Dubner R.
        Supraspinal glial-neuronal interactions contribute to descending pain facilitation.
        J Neurosci. 2008; 28: 10482-10495
        • Weng H.R.
        • Aravindan N.
        • Cata J.P.
        • Chen J.H.
        • Shaw A.D.
        • Dougherty P.M.
        Spinal glial glutamate transporters downregulate in rats with taxol-induced hyperalgesia.
        Neurosci Lett. 2005; 386: 18-22
        • Weng H.R.
        • Chen J.H.
        • Pan Z.Z.
        • Nie H.
        Glial glutamate transporter 1 regulates the spatial and temporal coding of glutamatergic synaptic transmission in spinal lamina II neurons.
        Neuroscience. 2007; 149: 898-907
        • Xin W.J.
        • Weng H.R.
        • Dougherty P.M.
        Plasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation.
        Mol Pain. 2009; 5: 15
        • Yaster M.
        • Guan X.
        • Petralia R.S.
        • Rothstein J.D.
        • Lu W.
        • Tao Y.X.
        Effect of inhibition of spinal cord glutamate transporters on inflammatory pain induced by formalin and complete Freund’s adjuvant.
        Anesthesiology. 2011; 114: 412-423
        • Yrjanheikki J.
        • Tikka T.
        • Keinanen R.
        • Goldsteins G.
        • Chan P.H.
        • Koistinaho J.
        A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window.
        Proc Natl Acad Sci USA. 1999; 96: 13496-13500
        • Zhang H.
        • Dougherty P.M.
        Acute inhibition of signaling phenotype of spinal GABAergic neurons by tumour necrosis factor-α.
        J Physiol. 2011; 589: 4511-4526
        • Zhang H.
        • Nei H.
        • Dougherty P.M.
        A p38 mitogen-activated protein kinase-dependent mechanism of disinhibition in spinal synaptic transmission induced by tumor necrosis factor-alpha.
        J Neurosci. 2010; 30: 12844-12855
        • Zhang H.J.
        • Xin W.J.
        • Dougherty P.M.
        Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes.
        Mol Pain. 2009; 5: 36
        • Zhang J.
        • De Koninck Y.
        Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury.
        J Neurochem. 2006; 97: 772-783
        • Zheng F.Y.
        • Xiao W.H.
        • Bennett G.J.
        The response of spinal microglia to chemotherapy-evoked painful peripheral neuropathies is distinct from that evoked by traumatic nerve injuries.
        Neuroscience. 2011; 176: 447-454
        • Zhuang Z.Y.
        • Kawasaki Y.
        • Tan P.H.
        • Wen Y.R.
        • Huang J.
        • Ji R.R.
        Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine.
        Brain Behav Immun. 2007; 21: 642-651