Central Sensitization and MAPKs Are Involved in Occlusal Interference-Induced Facial Pain in Rats


      We previously developed a rat dental occlusal interference model of facial pain that was produced by bonding a crown onto the right maxillary first molar and was reflected in sustained facial hypersensitivity that was suggestive of the involvement of central sensitization mechanisms. The aim of the present study was to investigate potential central mechanisms involved in the occlusal interference-induced facial hypersensitivity. A combination of behavioral, immunohistochemical, Western blot, and electrophysiological recording procedures was used in 98 male adult Sprague Dawley rats that either received the occlusal interference or were sham-operated or naive rats. Immunohistochemically labeled astrocytes and microglia in trigeminal subnucleus caudalis (Vc) showed morphological changes indicative of astrocyte and microglial activation after the occlusal interference. Prolonged upregulation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) was also documented in Vc after placement of the occlusal interference and was expressed in both neurons and glial cells at time points when rats showed peak mechanical facial hypersensitivity. The intrathecal administration of the p38 MAPK inhibitor SB203580 to the medulla significantly inhibited the occlusal interference-induced hypersensitivity, and the ERK inhibitor PD98059 produced an even stronger effect. Central sensitization of functionally identified Vc nociceptive neurons following placement of the occlusal interference was also documented by extracellular electrophysiological recordings, and intrathecal administration of PD98059 could reverse the neuronal central sensitization. These novel findings suggest that central mechanisms including central sensitization of trigeminal nociceptive neurons and non-neuronal processes involving MAPKs play significant roles in the production of occlusal interference-induced facial pain.


      Central mechanisms including trigeminal nociceptive neuronal sensitization, non-neuronal processes involving glial activation, and MAPKs play significant roles in occlusal interference-induced facial pain. These mechanisms may be involved in clinical manifestations of facial pain that have been reported in patients with an occlusal interference.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Amano N.
        • Hu J.W.
        • Sessle B.J.
        Responses of neurons in feline trigeminal subnucleus caudalis (medullary dorsal horn) to cutaneous, intraoral, and muscle afferent stimuli.
        J Neurophysiol. 1986; 55: 227-243
        • Broton J.
        • Hu J.
        • Sessle B.
        Effects of temporomandibular joint stimulation on nociceptive and nonnociceptive neurons of the cat's trigeminal subnucleus caudalis (medullary dorsal horn).
        J Neurophysiol. 1988; 59: 1575-1589
        • Cao Y.
        • Xie Q.F.
        • Li K.
        • Light A.R.
        • Fu K.Y.
        Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats.
        Pain. 2009; 144: 287-293
      1. Cao Y, Li K, Fu KY, Xie QF, Chiang CY, Sessle B: Central sensitization and MAPKs are involved in facial pain induced by dental occlusal interference in rats. The 14th World Congress on Pain, Milan, Italy, Abstract 107467, 2012,

        • Chiang C.Y.
        • Park S.J.
        • Kwan C.L.
        • Hu J.W.
        • Sessle B.J.
        NMDA receptor mechanisms contribute to neuroplasticity induced in caudalis nociceptive neurons by tooth pulp stimulation.
        J Neurophysiol. 1998; 80: 2621-2631
        • Chiang C.Y.
        • Wang J.
        • Xie Y.F.
        • Zhang S.
        • Hu J.W.
        • Dostrovsky J.O.
        • Sessle B.J.
        Astroglial glutamate-glutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn.
        J Neurosci. 2007; 27: 9068-9076
        • Chiang C.Y.
        • Dostrovsky J.O.
        • Iwata K.
        • Sessle B.J.
        Role of glia in orofacial pain.
        Neuroscientist. 2011; 17: 303-320
        • Clark G.T.
        • Tsukiyama Y.
        • Baba K.
        • Watanabe T.
        Sixty-eight years of experimental occlusal interference studies: What have we learned?.
        J Prosthet Dent. 1999; 82: 704-713
        • Colburn R.
        • DeLeo J.
        • Rickman A.
        • Yeager M.
        • Kwon P.
        • Hickey W.
        Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat.
        J Neuroimmunol. 1997; 79: 163-175
        • Fernández-de-las-Peņas C.
        • Galán-del-Río F.
        • Fernández-Carnero J.
        • Pesquera J.
        • Arendt-Nielsen L.
        • Svensson P.
        Bilateral widespread mechanical pain sensitivity in women with myofascial temporomandibular disorder: Evidence of impairment in central nociceptive processing.
        J Pain. 2009; 10: 1170-1178
        • Guo W.
        • Wang H.
        • Watanabe M.
        • Shimizu K.
        • Zou S.
        • LaGraize S.C.
        • Wei F.
        • Dubner R.
        • Ren K.
        Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain.
        J Neurosci. 2007; 27: 6006-6018
        • Guo W.
        • Wang H.
        • Zou S.
        • Wei F.
        • Dubner R.
        • Ren K.
        Long lasting pain hypersensitivity following ligation of the tendon of the masseter muscle in rats: A model of myogenic orofacial pain.
        Mol Pain. 2010; 6: 40
        • Hagberg C.
        • Hellsing G.
        • Hagberg M.
        Perception of cutaneous electrical stimulation in patients with craniomandibular disorders.
        J Craniomandib Disord. 1990; 4: 120-125
        • Hedenberg-Magnusson B.
        • Ernberg M.
        • Kopp S.
        Symptoms and signs of temporomandibular disorders in patients with fibromyalgia and local myalgia of the temporomandibular system. A comparative study.
        Acta Odontol Scand. 1997; 55: 344-349
        • Honda K.
        • Noma N.
        • Shinoda M.
        • Miyamoto M.
        • Katagiri A.
        • Kita D.
        • Liu M.G.
        • Sessle B.J.
        • Yasuda M.
        • Iwata K.
        Involvement of peripheral ionotropic glutamate receptors in orofacial thermal hyperalgesia in rats.
        Mol Pain. 2011; 7: 75
        • Hu J.
        • Sessle B.
        • Raboisson P.
        • Dallel R.
        • Woda A.
        Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brain-stem neurones.
        Pain. 1992; 48: 53-60
        • Huang W.
        • Wang B.
        • Yao L.
        • Huang C.
        • Wang X.
        • Zhang P.
        • Jiao X.
        • Duan X.
        • Chen B.
        • Ju G.
        Activity of p44/42 MAP kinase in the caudal subnucleus of trigeminal spinal nucleus is increased following perioral noxious stimulation in the mouse.
        Brain Res. 2000; 861: 181-185
        • Inoue K.
        • Tsuda M.
        Microglia and neuropathic pain.
        Glia. 2009; 57: 1469-1479
        • Itoh K.
        • Chiang C.Y.
        • Li Z.
        • Lee J.C.
        • Dostrovsky J.O.
        • Sessle B.J.
        Central sensitization of nociceptive neurons in rat medullary dorsal horn involves purinergic P2X7 receptors.
        Neuroscience. 2011; 192: 721-731
        • Iwata K.
        • Imai T.
        • Tsuboi Y.
        • Tashiro A.
        • Ogawa A.
        • Morimoto T.
        • Masuda Y.
        • Tachibana Y.
        • Hu J.
        Alteration of medullary dorsal horn neuronal activity following inferior alveolar nerve transection in rats.
        J Neurophysiol. 2001; 86: 2868-2877
        • Ji R.R.
        • Baba H.
        • Brenner G.J.
        • Woolf C.J.
        Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity.
        Nat Neurosci. 1999; 2: 1114-1119
        • Ji R.R.
        • Woolf C.J.
        Neuronal plasticity and signal transduction in nociceptive neurons: Implications for the initiation and maintenance of pathological pain.
        Neurobiol Dis. 2001; 8: 1-10
        • Ji R.R.
        • Befort K.
        • Brenner G.J.
        • Woolf C.J.
        ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity.
        J Neurosci. 2002; 22: 478-485
        • Ji R.R.
        • Gereau 4th, R.W.
        • Malcangio M.
        • Strichartz G.R.
        MAP kinase and pain.
        Brain Res Rev. 2009; 60: 135-148
        • Kobayashi A.
        • Shinoda M.
        • Sessle B.J.
        • Honda K.
        • Imamura Y.
        • Hitomi S.
        • Tsuboi Y.
        • Okada-Ogawa A.
        • Iwata K.
        Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats.
        Mol Pain. 2011; 7: 12
        • Lam D.K.
        • Sessle B.J.
        • Hu J.W.
        Glutamate and capsaicin effects on trigeminal nociception II: Activation and central sensitization in brainstem neurons with deep craniofacial afferent input.
        Brain Res. 2009; 1253: 48-59
        • Landi N.
        • Manfredini D.
        • Tognini F.
        • Romagnoli M.
        • Bosco M.
        Quantification of the relative risk of multiple occlusal variables for muscle disorders of the stomatognathic system.
        J Prosthet Dent. 2004; 92: 190-195
        • Laskin D.M.
        • Greene C.S.
        • Hylander W.L.
        Temporomandibular Disorders: An Evidence-Based Approach to Diagnosis and Treatment.
        Quintessence Publishing Co, Chicago, IL2006
        • Li J.
        • Jiang T.
        • Feng H.
        • Wang K.
        • Zhang Z.
        • Ishikawa T.
        The electromyographic activity of masseter and anterior temporalis during orofacial symptoms induced by experimental occlusal highspot.
        J Oral Rehabil. 2008; 35: 79-87
        • Lim E.J.
        • Jeon H.J.
        • Yang G.Y.
        • Lee M.K.
        • Ju J.S.
        • Han S.R.
        • Ahn D.K.
        Intracisternal administration of mitogen-activated protein kinase inhibitors reduced mechanical allodynia following chronic constriction injury of infraorbital nerve in rats.
        Prog Neuropsychopharmacol Biol Psychiatry. 2007; 31: 1322-1329
        • Lima A.F.
        • Cavalcanti A.N.
        • Martins L.R.
        • Marchi G.M.
        Occlusal interferences: How can this concept influence the clinical practice?.
        Eur J Dent. 2010; 4: 487-491
        • Liu X.D.
        • Wang J.J.
        • Sun L.
        • Chen L.W.
        • Rao Z.R.
        • Duan L.
        • Cao R.
        • Wang M.Q.
        Involvement of medullary dorsal horn glial cell activation in mediation of masseter mechanical allodynia induced by experimental tooth movement.
        Arch Oral Biol. 2009; 54: 1143-1150
        • Maixner W.
        • Fillingim R.
        • Sigurdsson A.
        • Kincaid S.
        • Silva S.
        Sensitivity of patients with painful temporomandibular disorders to experimentally evoked pain: Evidence for altered temporal summation of pain.
        Pain. 1998; 76: 71-81
        • Marklund S.
        • Wanman A.
        Incidence and prevalence of myofascial pain in the jaw-face region. A one-year prospective study on dental students.
        Acta Odontol Scand. 2008; 66: 113-121
        • Mense S.
        Nociception from skeletal muscle in relation to clinical muscle pain.
        Pain. 1993; 54: 241-289
        • Michelotti A.
        • Farella M.
        • Gallo L.M.
        • Veltri A.
        • Palla S.
        • Martina R.
        Effect of occlusal interference on habitual activity of human masseter.
        J Dent Res. 2005; 84: 644-648
        • Milligan E.D.
        • Watkins L.R.
        Pathological and protective roles of glia in chronic pain.
        Nat Rev Neurosci. 2009; 10: 23-36
        • Noma N.
        • Tsuboi Y.
        • Kondo M.
        • Matsumoto M.
        • Sessle B.J.
        • Kitagawa J.
        • Saito K.
        • Iwata K.
        Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats.
        J Comp Neurol. 2008; 507: 1428-1440
        • Okada-Ogawa A.
        • Suzuki I.
        • Sessle B.J.
        • Chiang C.Y.
        • Salter M.W.
        • Dostrovsky J.O.
        • Tsuboi Y.
        • Kondo M.
        • Kitagawa J.
        • Kobayashi A.
        Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms.
        J Neurosci. 2009; 29: 11161-11171
        • Piao Z.G.
        • Cho I.H.
        • Park C.K.
        • Hong J.P.
        • Choi S.Y.
        • Lee S.J.
        • Lee S.
        • Park K.
        • Kim J.S.
        • Oh S.B.
        Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury.
        Pain. 2006; 121: 219-231
        • Reid K.
        • Gracely R.
        • Dubner R.
        The influence of time, facial side, and location on pain-pressure thresholds in chronic myogenous temporomandibular disorder.
        J Orofac Pain. 1994; 8: 258-265
        • Ren K.
        • Dubner R.
        Interactions between the immune and nervous systems in pain.
        Nat Med. 2010; 16: 1267-1276
        • Romero-Sandoval A.
        • Chai N.
        • Nutile-McMenemy N.
        • DeLeo J.A.
        A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain.
        Brain Res. 2008; 1219: 116-126
        • Saito K.
        • Hitomi S.
        • Suzuki I.
        • Masuda Y.
        • Kitagawa J.
        • Tsuboi Y.
        • Kondo M.
        • Sessle B.J.
        • Iwata K.
        Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats.
        J Neurophysiol. 2008; 99: 2251-2263
        • Sarlani E.
        • Greenspan J.D.
        Evidence for generalized hyperalgesia in temporomandibular disorders patients.
        Pain. 2003; 102: 221-226
        • Schmitter M.
        • Balke Z.
        • Hassel A.
        • Ohlmann B.
        • Rammelsberg P.
        The prevalence of myofascial pain and its association with occlusal factors in a threshold country non-patient population.
        Clin Oral Investig. 2007; 11: 277-281
        • Scholz J.
        • Woolf C.J.
        The neuropathic pain triad: Neurons, immune cells and glia.
        Nat Neurosci. 2007; 10: 1361-1368
        • Sessle B.J.
        The neural basis of temporomandibular joint and masticatory muscle pain.
        J Orofac Pain. 1999; 13: 238-245
        • Sessle B.J.
        Acute and chronic craniofacial pain: Brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates.
        Crit Rev Oral Biol Med. 2000; 11: 57-91
        • Sessle B.J.
        Orofacial Pain: From Basic Science to Clinical Management: The Transfer of Knowledge in Pain Research to Education.
        2nd ed. Quintessence Pub, Hanover Park, IL2008
        • Shimizu K.
        • Guo W.
        • Wang H.
        • Zou S.
        • LaGraize S.C.
        • Iwata K.
        • Wei F.
        • Dubner R.
        • Ren K.
        Differential involvement of trigeminal transition zone and laminated subnucleus caudalis in orofacial deep and cutaneous hyperalgesia: The effects of interleukin-10 and glial inhibitors.
        Mol Pain. 2009; 5: 75
        • Suvinen T.I.
        • Reade P.C.
        • Kemppainen P.
        • Kononen M.
        • Dworkin S.F.
        Review of aetiological concepts of temporomandibular pain disorders: Towards a biopsychosocial model for integration of physical disorder factors with psychological and psychosocial illness impact factors.
        Eur J Pain. 2005; 9: 613-633
        • Svensson P.
        • Graven-Nielsen T.
        Craniofacial muscle pain: Review of mechanisms and clinical manifestations.
        J Orofac Pain. 2001; 15: 117-145
        • Sweitzer S.M.
        • Colburn R.W.
        • Rutkowski M.
        • DeLeo J.A.
        Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat.
        Brain Res. 1999; 829: 209-221
        • Terayama R.
        • Fujisawa N.
        • Yamaguchi D.
        • Omura S.
        • Ichikawa H.
        • Sugimoto T.
        Differential activation of mitogen-activated protein kinases and glial cells in the trigeminal sensory nuclear complex following lingual nerve injury.
        Neurosci Res. 2011; 69: 100-110
        • Thomas G.M.
        • Huganir R.L.
        MAPK cascade signalling and synaptic plasticity.
        Nat Rev Neurosci. 2004; 5: 173-183
        • Tsuboi Y.
        • Iwata K.
        • Dostrovsky J.O.
        • Chiang C.Y.
        • Sessle B.J.
        • Hu J.W.
        Modulation of astroglial glutamine synthetase activity affects nociceptive behaviour and central sensitization of medullary dorsal horn nociceptive neurons in a rat model of chronic pulpitis.
        Eur J Neurosci. 2011; 34: 292-302
        • Turp J.C.
        • Greene C.S.
        • Strub J.R.
        Dental occlusion: A critical reflection on past, present and future concepts.
        J Oral Rehabil. 2008; 35: 446-453
        • Watkins L.R.
        • Milligan E.D.
        • Maier S.F.
        Glial activation: A driving force for pathological pain.
        Trends Neurosci. 2001; 24: 450-455
        • Xia Z.
        • Dudek H.
        • Miranti C.K.
        • Greenberg M.E.
        Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism.
        J Neurosci. 1996; 16: 5425-5436
        • Xie Y.
        • Zhang S.
        • Chiang C.
        • Hu J.
        • Dostrovsky J.
        • Sessle B.
        Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn).
        Brain Behav Immun. 2007; 21: 634-641
        • Xu M.
        • Aita M.
        • Chavkin C.
        Partial infraorbital nerve ligation as a model of trigeminal nerve injury in the mouse: Behavioral, neural, and glial reactions.
        J Pain. 2008; 9: 1036-1048
        • Yeo J.F.
        • Liu H.
        • Leong S.K.
        Sustained microglial immunoreactivity in the caudal spinal trigeminal nucleus after formalin injection.
        J Dent Res. 2001; 80: 1524-1529
        • Zhuang Z.Y.
        • Gerner P.
        • Woolf C.J.
        • Ji R.R.
        ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model.
        Pain. 2005; 114: 149-159