Abstract
Voltage-gated sodium channels (Nav) are essential for the generation and conduction
of action potentials. Peripheral inflammation increases the expression of Nav1.7 and
Nav1.8 in dorsal root ganglion (DRG) neurons, suggesting that they participate in
the induction and maintenance of chronic inflammatory pain. However, how Nav1.7 and
Nav1.8 are regulated in the DRG under inflammatory pain conditions remains unclear.
Using a complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model and
Western blot analysis, we found that phosphorylated Akt (p-Akt) was significantly
increased in the ipsilateral L4/5 DRGs of rats on days 3 and 7 after intraplantar
CFA injection. Immunohistochemistry showed that the percentage of p-Akt-positive neurons
in the DRG was also significantly increased in the ipsilateral L4/5 DRGs at these
time points. Moreover, CFA injection increased the colocalization of p-Akt with Nav1.7
and Nav1.8 in L4/5 DRG neurons. Pretreatment of rats with an intrathecal injection
of Akt inhibitor IV blocked CFA-induced thermal hyperalgesia and CFA-induced increases
in Nav1.7 and Nav1.8 in the L4/5 DRGs on day 7 after CFA injection. Our findings suggest
that the Akt pathway participates in inflammation-induced upregulation of Nav1.7 and
Nav1.8 expression in DRG neurons. This participation might contribute to the maintenance
of chronic inflammatory pain.
Perspective
This article presents that inhibition of Akt blocks CFA-induced thermal hyperalgesia
and CFA-induced increases in dorsal root ganglion Nav1.7 and Nav1.8. These findings
have potential implications for use of Akt inhibitors to prevent and/or treat persistent
inflammatory pain.
Key words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to The Journal of PainAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways.Nat Neurosci. 1999; 2: 541-548
- Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level.Mol Pain. 2009; 5: 27
- The two TORCs and Akt.Dev Cell. 2007; 12: 487-502
- Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs.Brain Res Mol Brain Res. 1996; 43: 117-131
- Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn.Mol Pain. 2012; 8: 82
- Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain.Pain. 2004; 108: 237-247
- Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway.Clin Cancer Res. 2011; 17: 1784-1795
- Differential expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 in normal and inflamed rats.Neurosci Lett. 2004; 355: 45-48
- Sodium channels in normal and pathological pain.Annu Rev Neurosci. 2010; 33: 325-347
- The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons.J Physiol. 2003; 550: 739-752
- Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein.J Physiol. 2003; 546: 565-576
- PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade.J Physiol. 1996; 495: 429-440
- The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition.Pain. 2010; 148: 309-319
- A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states.J Neurosci. 2009; 29: 15017-15027
- Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro.J Neurosci. 1998; 18: 10345-10355
- Ibuprofen blocks changes in Na v. 1.7 and 1.8 sodium channels associated with complete Freund's adjuvant-induced inflammation in rat.J Pain. 2004; 5: 270-280
- The growing role of mTOR in neuronal development and plasticity.Mol Neurobiol. 2006; 34: 205-219
- Positive feedback regulation of Akt-FMRP pathway protects neurons from cell death.J Neurochem. 2012; 123: 226-238
- Local translation in primary afferent fibers regulates nociception.PLoS ONE. 2008; 3: e1961
- Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states.Pain. 2006; 123: 75-82
- Involvement of multiple phosphatidylinositol 3-kinase-dependent pathways in the persistence of late-phase long term potentiation expression.Neuroscience. 2006; 137: 833-841
- Central sensitization: a generator of pain hypersensitivity by central neural plasticity.J Pain. 2009; 10: 895-926
- Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain.Proc Natl Acad Sci U S A. 2004; 101: 12706-12711
- Regulation of expression of the sensory neuron-specific sodium channel SNS in inflammatory and neuropathic pain.Mol Cell Neurosci. 1997; 10: 196-207
- Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons.J Neurosci. 2009; 29: 3206-3219
- Role of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in complete Freund's adjuvant-induced inflammatory pain.Mol Pain. 2008; 4: 67
- Activity-dependent phosphorylation of Akt/PKB in adult DRG neurons.Eur J Neurosci. 2005; 21: 1785-1797
- Decreased nociceptive sensitization in mice lacking the fragile X mental retardation protein: role of mGluR1/5 and mTOR.J Neurosci. 2007; 27: 13958-13967
- Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region.J Neurosci. 2002; 22: 3359-3365
- Expression of p-Akt in sensory neurons and spinal cord after peripheral nerve injury.Neurosignals. 2009; 17: 203-212
- Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats.J Pain. 2012; 13: 338-349
- Clusterin induces matrix metalloproteinase-9 expression via ERK1/2 and PI3K/Akt/NF-kappaB pathways in monocytes/macrophages.J Leukoc Biol. 2011; 90: 761-769
- Changes in the expression of NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root ganglia innervating the rat knee joint in a model of chronic inflammatory joint pain.Eur J Pain. 2008; 12: 564-572
- Activation of protein kinase B/Akt signaling pathway contributes to mechanical hypersensitivity induced by capsaicin.Pain. 2006; 120: 86-96
- SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model.Neuroreport. 1998; 9: 967-972
- Expression and action of cyclic GMP-dependent protein kinase Ialpha in inflammatory hyperalgesia in rat spinal cord.Neuroscience. 2000; 95: 525-533
- Expression of PSD-95/SAP90 is critical for N-methyl-D-aspartate receptor-mediated thermal hyperalgesia in the spinal cord.Neuroscience. 2000; 98: 201-206
- Effect of the deficiency of spinal PSD-95/SAP90 on the minimum alveolar anesthetic concentration of isoflurane in rats.Anesthesiology. 2001; 94: 1010-1015
- Activation and up-regulation of spinal cord nitric oxide receptor, soluble guanylate cyclase, after formalin injection into the rat hind paw.Neuroscience. 2002; 112: 439-446
- Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons.Nat Neurosci. 1998; 1: 653-655
- Sodium channels, excitability of primary sensory neurons, and the molecular basis of pain.Muscle Nerve. 1999; 22: 1177-1187
- Activation of phosphatidylinositol 3-kinase and protein kinase B/Akt in dorsal root ganglia and spinal cord contributes to the neuropathic pain induced by spinal nerve ligation in rats.Exp Neurol. 2007; 206: 269-279
- Expression and distribution of mTOR, p70S6K, 4E-BP1, and their phosphorylated counterparts in rat dorsal root ganglion and spinal cord dorsal horn.Brain Res. 2010; 1336: 46-57
- Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia.J Neurosci. 2011; 31: 2113-2124
- Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Nav1.7 sodium channels in primary afferents.Hum Gene Ther. 2005; 16: 271-277
- Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization.J Neurosci. 2004; 24: 8300-8309
Article info
Publication history
Published online: May 02, 2013
Accepted:
January 25,
2013
Received in revised form:
December 18,
2012
Received:
August 11,
2012
Footnotes
Supported by grants (NS072206, NS058886, DA033390) from the National Institutes of Health; Mr. David Koch and the Patrick C. Walsh Prostate Cancer Research Fund; the Rita Allen Foundation; and the Blaustein Pain Research Fund.
The authors do not have any conflicts of interest.
Identification
Copyright
© 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.