Advertisement
Original Report| Volume 14, ISSUE 9, P957-965, September 2013

Crossing the Line of Pain: fMRI Correlates of Crossed-Hands Analgesia

      Abstract

      Crossing the hands over the body midline reduces the perceived intensity of nociceptive stimuli applied to the hands by impairing the ability to localize somatosensory stimuli. The neural basis of this “crossed-hands analgesia” has not been investigated previously, although it has been proposed that the effect may be modulated by multimodal areas. We used functional magnetic resonance imaging to test the hypothesis that crossed-hands analgesia is mediated by higher-order multimodal areas rather than by specific somatosensory ones. Participants lay in the scanner while mechanical painful stimuli were applied to their hands held in either a crossed or uncrossed position. They reported significantly lower perceived intensity of pain when their hands were crossed. Although activations elicited by stimuli applied to the crossed hands revealed significantly greater blood oxygen level–dependent responses in the anterior cingulate cortex, the insula, and the medial frontal gyrus, the blood oxygen level–dependent responses in the superior parietal lobe were greater with the hands uncrossed. Our results provide evidence that crossed-hands analgesia is mediated by higher-order frontoparietal multimodal areas involved in sustaining and updating body and spatial representations.

      Perspective

      We found crossed-hands analgesia to be mediated by multimodal areas, such as the posterior parietal, cingulate, and insular cortices, implicated in space and body representation. Our findings highlight how the perceived intensity of painful stimuli is shaped by how we represent our body and the space surrounding it.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aglioti S.
        • Smania N.
        • Peru A.
        Frames of reference for mapping tactile stimuli in brain-damaged patients.
        J Cogn Neurosci. 1999; 11: 67-79
        • Apkarian A.V.
        • Bushnell M.C.
        • Treede R.D.
        • Zubieta J.K.
        Human brain mechanisms of pain perception and regulation in health and disease.
        Eur J Pain. 2005; 9: 463-484
        • Avillac M.
        • Deneve S.
        • Olivier E.
        • Pouget A.
        • Duhamel J.R.
        Reference frames for representing visual and tactile locations in parietal cortex.
        Nat Neurosci. 2005; 8: 941-949
        • Bantick S.J.
        • Wise R.G.
        • Ploghaus A.
        • Clare S.
        • Smith S.M.
        • Tracey I.
        Imaging how attention modulates pain in humans using functional MRI.
        Brain. 2002; 125: 310-319
        • Baumgartner U.
        • Iannetti G.D.
        • Zambreanu L.
        • Stoeter P.
        • Treede R.D.
        • Tracey I.
        Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: A high-resolution fMRI study.
        J Neurophysiol. 2010; 104: 2863-2872
        • Baumgartner U.
        • Magerl W.
        • Klein T.
        • Hopf H.C.
        • Treede R.D.
        Neurogenic hyperalgesia versus painful hypoalgesia: Two distinct mechanisms of neuropathic pain.
        Pain. 2002; 96: 141-151
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: A practical and powerful approach to multiple testing.
        J R Stat Soc Ser B. 1995; 57: 289-300
        • Boynton G.M.
        • Engel S.A.
        • Glover G.H.
        • Heeger D.J.
        Linear systems analysis of functional magnetic resonance imaging in human V1.
        J Neurosci. 1996; 16: 4207-4221
        • Committeri G.
        • Pitzalis S.
        • Galati G.
        • Patria F.
        • Pelle G.
        • Sabatini U.
        • Castriota-Scanderbeg A.
        • Piccardi L.
        • Guariglia C.
        • Pizzamiglio L.
        Neural bases of personal and extrapersonal neglect in humans.
        Brain. 2007; 130: 431-441
        • Culham J.C.
        • Kanwisher N.G.
        Neuroimaging of cognitive functions in human parietal cortex.
        Curr Opin Neurobiol. 2001; 11: 157-163
        • Doricchi F.
        • Thiebaut de Schotten M.
        • Tomaiuolo F.
        • Bartolomeo P.
        White matter (dis)connections and gray matter (dys)functions in visual neglect: Gaining insights into the brain networks of spatial awareness.
        Cortex. 2008; 44: 983-995
        • Duerden E.G.
        • Albanese M.C.
        Localization of pain-related brain activation: A meta-analysis of neuroimaging data.
        Hum Brain Mapp. 2011; 34: 109-149
        • Frankenstein U.N.
        • Richter W.
        • McIntyre M.C.
        • Remy F.
        Distraction modulates anterior cingulate gyrus activations during the cold pressor test.
        Neuroimage. 2001; 14: 827-836
        • Friebel U.
        • Eickhoff S.B.
        • Lotze M.
        Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain.
        Neuroimage. 2011; 58: 1070-1080
        • Gallace A.
        • Soto-Faraco S.
        • Dalton P.
        • Kreukniet B.
        • Spence C.
        Response requirements modulate tactile spatial congruency effects.
        Exp Brain Res. 2008; 191: 171-186
        • Gallace A.
        • Spence C.
        The cognitive and neural correlates of “tactile consciousness”: A multisensory perspective.
        Conscious Cogn. 2008; 17: 370-407
        • Gallace A.
        • Spence C.
        The role of somatosensory cortex in the awareness of tactile information.
        Psyche (Stuttg). 2010; 16: 30-67
        • Gallace A.
        • Torta D.M.
        • Moseley G.L.
        • Iannetti G.D.
        The analgesic effect of crossing the arms.
        Pain. 2011; 152: 1418-1423
        • Garcia-Larrea L.
        • Frot M.
        • Valeriani M.
        Brain generators of laser-evoked potentials: From dipoles to functional significance.
        Neurophysiol Clin. 2003; 33: 279-292
        • Greenspan J.D.
        • McGillis S.L.
        Thresholds for the perception of pressure, sharpness, and mechanically evoked cutaneous pain: Effects of laterality and repeated testing.
        Somatosens Motor Res. 1994; 11: 311-317
        • Greenspan J.D.
        • Thomadaki M.
        • McGillis S.L.
        Spatial summation of perceived pressure, sharpness and mechanically evoked cutaneous pain.
        Somatosens Motor Res. 1997; 14: 107-112
        • Greicius M.D.
        • Krasnow B.
        • Reiss A.L.
        • Menon V.
        Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.
        Proc Natl Acad Sci U S A. 2003; 100: 253-258
        • Haggard P.
        • Wolpert D.M.
        Disorders of body scheme.
        in: Freund H.-J. Jeannerod M. Hallett M. Leiguarda R. Higher-Order Motor Disorders: From Neuroanatomy and Neurobiology to Clinical Neurology. Oxford University Press, New York, NY2005: 261-271
        • Hu L.
        • Mouraux A.
        • Hu Y.
        • Iannetti G.D.
        A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials.
        Neuroimage. 2010; 50: 99-111
        • Kaas J.H.
        What, if anything, is SI? Organization of first somatosensory area of cortex.
        Physiol Rev. 1983; 63: 206-231
        • Kobor I.
        • Furedi L.
        • Kovacs G.
        • Spence C.
        • Vidnyanszky Z.
        Back-to-front: Improved tactile discrimination performance in the space you cannot see.
        Neurosci Lett. 2006; 400: 163-167
        • Lee M.C.
        • Mouraux A.
        • Iannetti G.D.
        Characterizing the cortical activity through which pain emerges from nociception.
        J Neurosci. 2009; 29: 7909-7916
        • Liu C.C.
        • Veldhuijzen D.S.
        • Ohara S.
        • Winberry J.
        • Greenspan J.D.
        • Lenz F.A.
        Spatial attention to thermal pain stimuli in subjects with visual spatial hemi-neglect: Extinction, mislocalization and misidentification of stimulus modality.
        Pain. 2011; 152: 498-506
        • Longo M.R.
        • Betti V.
        • Aglioti S.M.
        • Haggard P.
        Visually induced analgesia: Seeing the body reduces pain.
        J Neurosci. 2009; 29: 12125-12130
        • Longo M.R.
        • Iannetti G.D.
        • Mancini F.
        • Driver J.
        • Haggard P.
        Linking pain and the body: Neural correlates of visually induced analgesia.
        J Neurosci. 2012; 32: 2601-2607
        • Lorenz J.
        • Garcia-Larrea L.
        Contribution of attentional and cognitive factors to laser evoked brain potentials.
        Neurophysiol Clin. 2003; 33: 293-301
        • Magerl W.
        • Fuchs P.N.
        • Meyer R.A.
        • Treede R.D.
        Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia.
        Brain. 2001; 124: 1754-1764
        • Makin T.R.
        • Holmes N.P.
        • Zohary E.
        Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus.
        J Neurosci. 2007; 27: 731-740
        • Mancini F.
        • Longo M.R.
        • Kammers M.P.
        • Haggard P.
        Visual distortion of body size modulates pain perception.
        Psychol Sci. 2011; 22: 325-330
        • Mantini D.
        • Perrucci M.G.
        • Del Gratta C.
        • Romani G.L.
        • Corbetta M.
        Electrophysiological signatures of resting state networks in the human brain.
        Proc Natl Acad Sci U S A. 2007; 104: 13170-13175
        • Mort D.J.
        • Malhotra P.
        • Mannan S.K.
        • Rorden C.
        • Pambakian A.
        • Kennard C.
        • Husain M.
        The anatomy of visual neglect.
        Brain. 2003; 126: 1986-1997
        • Moseley G.L.
        • Gallace A.
        • Iannetti G.D.
        Spatially defined modulation of skin temperature and hand ownership of both hands in patients with unilateral complex regional pain syndrome.
        Brain. 2012; 135: 3676-3686
        • Moseley G.L.
        • Gallace A.
        • Spence C.
        Bodily illusions in health and disease: Physiological and clinical perspectives and the concept of a cortical “body matrix.”.
        Neurosci Biobehav Rev. 2012; 36: 34-46
        • Moseley G.L.
        • Gallace A.
        • Spence C.
        Space-based, but not arm-based, shift in tactile processing in complex regional pain syndrome and its relationship to cooling of the affected limb.
        Brain. 2009; 132: 3142-3151
        • Moseley G.L.
        • Gallagher L.
        • Gallace A.
        Neglect-like tactile dysfunction in chronic back pain.
        Neurology. 2012; 79: 327-332
        • Moulton E.A.
        • Pendse G.
        • Becerra L.R.
        • Borsook D.
        BOLD responses in somatosensory cortices better reflect heat sensation than pain.
        J Neurosci. 2012; 32: 6024-6031
        • Mountcastle V.B.
        The Sensory Hand: Neural Mechanisms of Somatic Sensation.
        Harvard University Press, Cambridge, MA2005
        • Mouraux A.
        • Iannetti G.D.
        Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity.
        J Neurophysiol. 2009; 101: 3258-3269
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh Inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Oshiro Y.
        • Quevedo A.S.
        • McHaffie J.G.
        • Kraft R.A.
        • Coghill R.C.
        Brain mechanisms supporting spatial discrimination of pain.
        J Neurosci. 2007; 27: 3388-3394
        • Pasalar S.
        • Ro T.
        • Beauchamp M.S.
        TMS of posterior parietal cortex disrupts visual tactile multisensory integration.
        Eur J Neurosci. 2010; 31: 1783-1790
        • Peyron R.
        • Laurent B.
        • Garcia-Larrea L.
        Functional imaging of brain responses to pain. A review and meta-analysis (2000).
        Neurophysiol Clin. 2000; 30: 263-288
        • Porro C.A.
        • Cettolo V.
        • Francescato M.P.
        • Baraldi P.
        Temporal and intensity coding of pain in human cortex.
        J Neurophysiol. 1998; 80: 3312-3320
        • Porro C.A.
        • Martinig M.
        • Facchin P.
        • Maieron M.
        • Jones A.K.
        • Fadiga L.
        Parietal cortex involvement in the localization of tactile and noxious mechanical stimuli: A transcranial magnetic stimulation study.
        Behav Brain Res. 2007; 178: 183-189
        • Rolke R.
        • Magerl W.
        • Campbell K.A.
        • Schalber C.
        • Caspari S.
        • Birklein F.
        • Treede R.D.
        Quantitative sensory testing: A comprehensive protocol for clinical trials.
        Eur J Pain. 2006; 10: 77-88
        • Sambo C.F.
        • Torta D.M.
        • Gallace A.
        • Liang M.
        • Moseley G.L.
        • Iannetti G.D.
        The temporal order judgement of tactile and nociceptive stimuli is impaired by crossing the hands over the body midline.
        Pain. 2013; 154: 242-247
        • Schubert R.
        • Blankenburg F.
        • Lemm S.
        • Villringer A.
        • Curio G.
        Now you feel it–now you don't: ERP correlates of somatosensory awareness.
        Psychophysiology. 2006; 43: 31-40
        • Shulman G.L.
        • Corbetta M.
        • Buckner R.L.
        • Raichle M.E.
        • Fiez J.A.
        • Miezin F.M.
        • Petersen S.E.
        Top-down modulation of early sensory cortex.
        Cereb Cortex. 1997; 7: 193-206
        • Slugg R.M.
        • Meyer R.A.
        • Campbell J.N.
        Response of cutaneous A- and C-fiber nociceptors in the monkey to controlled-force stimuli.
        J Neurophysiol. 2000; 83: 2179-2191
        • Smania N.
        • Aglioti S.
        Sensory and spatial components of somaesthetic deficits following right brain damage.
        Neurology. 1995; 45: 1725-1730
        • Sumitani M.
        • Rossetti Y.
        • Shibata M.
        • Matsuda Y.
        • Sakaue G.
        • Inoue T.
        • Mashimo T.
        • Miyauchi S.
        Prism adaptation to optical deviation alleviates pathologic pain.
        Neurology. 2007; 68: 128-133
        • Talairach J.
        • Tournoux P.
        Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging.
        Thieme, New York, NY1988
        • Treede R.D.
        • Kenshalo D.R.
        • Gracely R.H.
        • Jones A.K.
        The cortical representation of pain.
        Pain. 1999; 79: 105-111
        • Treede R.D.
        • Kief S.
        • Holzer T.
        • Bromm B.
        Late somatosensory evoked cerebral potentials in response to cutaneous heat stimuli.
        Electroencephalogr Clin Neurophysiol. 1988; 70: 429-441
        • Valentini E.
        • Hu L.
        • Chakrabarti B.
        • Aglioti S.M.
        • Hu Y.
        • Iannetti G.D.
        The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli.
        Neuroimage. 2012; 59: 1571-1581
        • Valet M.
        • Sprenger T.
        • Boecker H.
        • Willoch F.
        • Rummeny E.
        • Conrad B.
        • Erhard P.
        • Tolle T.R.
        Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain—An fMRI analysis.
        Pain. 2004; 109: 399-408
        • Vallar G.
        Extrapersonal visual unilateral spatial neglect and its neuroanatomy.
        Neuroimage. 2001; 14: S52-S58
        • Vallar G.
        • Perani D.
        The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man.
        Neuropsychologia. 1986; 24: 609-622
        • Ziegler E.A.
        • Magerl W.
        • Meyer R.A.
        • Treede R.D.
        Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input.
        Brain. 1999; 122: 2245-2257