Soluble Epoxide Hydrolase Inhibition Is Antinociceptive in a Mouse Model of Diabetic Neuropathy


      • Inhibiting the soluble epoxide hydrolase (sEH) is effective against neuropathic pain.
      • sEH inhibitors are effective against chronic pain in an operant nociceptive assay.
      • The small molecule sEH inhibitors show potent analgesia without reward side effects.


      Neuropathic pain is currently an insufficiently treated clinical condition. There remains a critical need for efficacious therapies without severe side effects to treat the uniquely persistent and tonic pain of neuropathy. Inhibitors of the soluble epoxide hydrolase (sEH) enzyme that stabilize endogenous epoxy fatty acids have demonstrated antihyperalgesia in clinical chronic inflammatory pain and modeled neuropathic pain. Recently, the conditioned place preference assay has been used to evaluate the tonic nature of neuropathy in several animal models. The current experiments use the conditioned place preference assay alongside withdrawal thresholds to investigate the antihyperalgesic efficacy of sEH inhibitors in a murine model of diabetic neuropathy. Here, the sEH inhibitor trans-4-[4-(3-trifluoromethoxyphenyl-1-ureido)-cyclohexyloxy]-benzoic acid (t-TUCB) at 10 mg/kg induced a robust place preference in diabetic neuropathic mice representative of pain relief. Importantly, this effect was absent both in control mice and in sEH-knockout mice at the same dose, indicating that t-TUCB is not positively reinforcing or rewarding. When compared to gabapentin, t-TUCB elicited a similar degree of withdrawal threshold improvement without the same degree of spontaneous locomotion decline in neuropathic mice. Overall, these experiments show that inhibiting the sEH enzyme attenuates chronic pain and offers an alternative to current side-effect-limited therapies to meet this clinical need.


      These experiments demonstrate antihyperalgesia in a murine chronic pain model mediated by inhibiting the sEH enzyme. The results of this study indicate that inhibiting the sEH is a promising alternative for blocking chronic pain.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Backonja M.M.
        • Stacey B.
        Neuropathic pain symptoms relative to overall pain rating.
        J Pain. 2004; 5: 491-497
        • Bardo M.T.
        • Bevins R.A.
        Conditioned place preference: What does it add to our preclinical understanding of drug reward?.
        Psychopharmacology (Berl). 2000; 153: 31-43
        • Blackburn-Munro G.
        • Erichsen H.K.
        Antiepileptics and the treatment of neuropathic pain: Evidence from animal models.
        Curr Pharm Des. 2005; 11: 2961-2976
        • Boulton A.J.
        • Vinik A.I.
        • Arezzo J.C.
        • Bril V.
        • Feldman E.L.
        • Freeman R.
        • Malik R.A.
        • Maser R.E.
        • Sosenko J.M.
        • Ziegler D.
        Diabetic neuropathies: A statement by the American Diabetes Association.
        Diabetes Care. 2005; 28: 956-962
        • Carr G.D.
        • Fibiger H.C.
        • Phillips A.G.
        Conditioned place preference as a measure of drug reward.
        in: Liebman J.M. Cooper S.J. The Neuropharmacological Basis of Reward. Clarendon Press, Oxford1989: 264-319
        • Carr G.D.
        • White N.M.
        Conditioned place preference from intra-accumbens but not intra-caudate amphetamine injections.
        Life Sci. 1983; 33: 2551-2557
        • Conroy J.L.
        • Fang C.
        • Gu J.
        • Zeitlin S.O.
        • Yang W.
        • Yang J.
        • VanAlstine M.A.
        • Nalwalk J.W.
        • Albrecht P.J.
        • Mazurkiewicz J.E.
        • Snyder-Keller A.
        • Shan Z.
        • Zhang S.-Z.
        • Wentland M.P.
        • Behr M.
        • Knapp B.I.
        • Bidlack J.M.
        • Zuiderveld O.P.
        • Leurs R.
        • Ding X.
        • Hough L.B.
        Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling.
        Nat Neurosci. 2010; 13: 284-286
        • Danaei G.
        • Finucane M.M.
        • Lu Y.
        • Singh G.M.
        • Cowan M.J.
        • Paciorek C.J.
        • Lin J.K.
        • Farzadfar F.
        • Khang Y.H.
        • Stevens G.A.
        • Rao M.
        • Ali M.K.
        • Riley L.M.
        • Robinson C.A.
        • Ezzati M.
        National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants.
        Lancet. 2011; 378: 31-40
        • Davidson E.
        • Coppey L.
        • Lu B.
        • Arballo V.
        • Calcutt N.A.
        • Gerard C.
        • Yorek M.
        The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy.
        Exp Diabetes Res. 2009; 2009 (Article ID 431980)
        • Davoody L.
        • Quiton R.L.
        • Lucas J.M.
        • Ji Y.
        • Keller A.
        • Masri R.
        Conditioned place preference reveals tonic pain in an animal model of central pain.
        J Pain. 2011; 12: 868-874
        • Di Lio A.
        • Benke D.
        • Besson M.
        • Desmeules J.
        • Daali Y.
        • Wang Z.J.
        • Edwankar R.
        • Cook J.M.
        • Zeilhofer H.U.
        HZ166, a novel GABAA receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain.
        Neuropharmacology. 2011; 60: 626-632
        • Edwards J.L.
        • Vincent A.M.
        • Cheng H.T.
        • Feldman E.L.
        Diabetic neuropathy: Mechanisms to management.
        Pharmacol Ther. 2008; 120: 1-34
        • Guedes A.G.P.
        • Morisseau C.
        • Sole A.
        • Soares J.H.N.
        • Ulu A.
        • Dong H.
        • Hammock B.D.
        Use of a soluble epoxide hydrolase inhibitor as an adjunctive analgesic in a horse with laminitis.
        Vet Anaesth Analg. 2013; 40: 440-448
        • Hwang S.H.
        • Tsai H.J.
        • Liu J.Y.
        • Morisseau C.
        • Hammock B.D.
        Orally bioavailable potent soluble epoxide hydrolase inhibitors.
        J Med Chem. 2007; 50: 3825-3840
        • Inceoglu B.
        • Jinks S.L.
        • Schmelzer K.R.
        • Waite T.
        • Kim I.H.
        • Hammock B.D.
        Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain.
        Life Sci. 2006; 79: 2311-2319
        • Inceoglu B.
        • Jinks S.L.
        • Ulu A.
        • Hegedus C.M.
        • Georgi K.
        • Schmelzer K.R.
        • Wagner K.
        • Jones P.D.
        • Morisseau C.
        • Hammock B.D.
        Soluble epoxide hydrolase and epoxyeicosatrienoic acids modulate two distinct analgesic pathways.
        Proc Natl Acad Sci U S A. 2008; 105: 18901-18906
        • King T.
        • Vera-Portocarrero L.
        • Gutierrez T.
        • Vanderah T.W.
        • Dussor G.
        • Lai J.
        • Fields H.L.
        • Porreca F.
        Unmasking the tonic-aversive state in neuropathic pain.
        Nat Neurosci. 2009; 12: 1364-1366
        • Kiso T.
        • Watabiki T.
        • Tsukamoto M.
        • Okabe M.
        • Kagami M.
        • Nishimura K.
        • Aoki T.
        • Matsuoka N.
        Pharmacological characterization and gene expression profiling of an L5/L6 spinal nerve ligation model for neuropathic pain in mice.
        Neuroscience. 2008; 153: 492-500
        • Kundu S.
        • Roome T.
        • Bhattacharjee A.
        • Carnevale K.A.
        • Yakubenko V.P.
        • Zhang R.
        • Hwang S.H.
        • Hammock B.D.
        • Cathcart M.K.
        Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo.
        J Lipid Res. 2013; 54: 436-447
        • Kusunose N.
        • Koyanagi S.
        • Hamamura K.
        • Matsunaga N.
        • Yoshida M.
        • Uchida T.
        • Tsuda M.
        • Inoue K.
        • Ohdo S.
        Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain.
        Mol Pain. 2010; 6: 83
        • Latremoliere A.
        • Woolf C.J.
        Central sensitization: A generator of pain hypersensitivity by central neural plasticity.
        J Pain. 2009; 10: 895-926
        • Liu J.Y.
        • Lin Y.P.
        • Qiu H.
        • Morisseau C.
        • Rose T.E.
        • Hwang S.H.
        • Chiamvimonvat N.
        • Hammock B.D.
        Substituted phenyl groups improve the pharmacokinetic profile and anti-inflammatory effect of urea-based soluble epoxide hydrolase inhibitors in murine models.
        Eur J Pharmaceutical Sci. 2013; 48: 619-627
        • Liu J.Y.
        • Tsai H.J.
        • Hwang S.H.
        • Jones P.D.
        • Morisseau C.
        • Hammock B.D.
        Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation.
        Br J Pharmacol. 2009; 156: 284-296
        • Luria A.
        • Morisseau C.
        • Tsai H.J.
        • Yang J.
        • Inceoglu B.
        • De Taeye B.
        • Watkins S.M.
        • Wiest M.M.
        • German J.B.
        • Hammock B.D.
        Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase.
        Am J Physiol Endocrinol Metab. 2009; 297: E375-E383
        • Mogil J.S.
        Animal models of pain: Progress and challenges.
        Nat Rev Neurosci. 2009; 10: 283-294
        • Morisseau C.
        • Inceoglu B.
        • Schmelzer K.
        • Tsai H.J.
        • Jinks S.L.
        • Hegedus C.M.
        • Hammock B.D.
        Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids.
        J Lipid Res. 2010; 51: 3481-3490
        • Mucha R.F.
        • van der Kooy D.
        • O'Shaughnessy M.
        • Bucenieks P.
        Drug reinforcement studied by the use of place conditioning in rat.
        Brain Res. 1982; 243: 91-105
        • Park H.J.
        • Stokes J.A.
        • Pirie E.
        • Skahen J.
        • Shtaerman Y.
        • Yaksh T.L.
        Persistent hyperalgesia in the cisplatin-treated mouse as defined by threshold measures, the conditioned place preference paradigm, and changes in dorsal root ganglia activated transcription factor 3: The effects of gabapentin, ketorolac, and etanercept.
        Anesth Analg. 2013; 116: 224-231
        • Prut L.
        • Belzung C.
        The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review.
        Eur J Pharmacol. 2003; 463: 3-33
        • Sinal C.J.
        • Miyata M.
        • Tohkin M.
        • Nagata K.
        • Bend J.R.
        • Gonzalez F.J.
        Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation.
        J Biol Chem. 2000; 275: 40504-40510
        • Stevens K.E.
        • Mickley G.A.
        • McDermott L.J.
        Brain areas involved in production of morphine-induced locomotor hyperactivity of the C57B1/6J mouse.
        Pharmacol Biochem Behav. 1986; 24: 1739-1747
        • Sufka K.J.
        Conditioned place preference paradigm: A novel approach for analgesic drug assessment against chronic pain.
        Pain. 1994; 58: 355-366
        • Sufka K.J.
        Translational challenges and analgesic screening assays.
        Pain. 2011; 152: 1942-1943
        • Terashvili M.
        • Tseng L.F.
        • Wu H.E.
        • Narayanan J.
        • Hart L.M.
        • Falck J.R.
        • Pratt P.F.
        • Harder D.R.
        Antinociception produced by 14,15-epoxyeicosatrienoic acid is mediated by the activation of beta-endorphin and met-enkephalin in the rat ventrolateral periaqueductal gray.
        J Pharmacol Exp Ther. 2008; 326: 614-622
        • Tomić M.A.
        • Vučković S.M.
        • Stepanović-Petrović R.M.
        • Micov A.M.
        • Ugrešić N.D.
        • Prostran M.Š.
        • Bošković B.
        Analysis of the antinociceptive interactions in two-drug combinations of gabapentin, oxcarbazepine and amitriptyline in streptozotocin-induced diabetic mice.
        Eur J Pharmacol. 2010; 628: 75-82
        • Tzschentke T.M.
        Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade.
        Addict Biol. 2007; 12: 227-462
        • Ulu A.
        • Davis B.B.
        • Tsai H.J.
        • Kim I.H.
        • Morisseau C.
        • Inceoglu B.
        • Fiehn O.
        • Hammock B.D.
        • Weiss R.H.
        Soluble epoxide hydrolase inhibitors reduce the development of atherosclerosis in apolipoprotein e-knockout mouse model.
        J Cardiovasc Pharmacol. 2008; 52: 314-323
        • Wagner K.
        • Inceoglu B.
        • Dong H.
        • Yang J.
        • Hwang S.H.
        • Jones P.
        • Morisseau C.
        • Hammock B.D.
        Comparative efficacy of 3 soluble epoxide hydrolase inhibitors in rat neuropathic and inflammatory pain models.
        Eur J Pharmacol. 2013; 700: 93-101