Advertisement

Music Modulation of Pain Perception and Pain-Related Activity in the Brain, Brain Stem, and Spinal Cord: A Functional Magnetic Resonance Imaging Study

      Highlights

      • Pain modulation by music is investigated with fMRI of the brain and spinal cord.
      • Behavioral responses showed a roughly 10% reduction of pain ratings with music.
      • fMRI showed altered responses to pain with music in spinal cord and higher structures.
      • Results suggest that music may evoke activation of the descending analgesia pathway.

      Abstract

      The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system.

      Perspective

      This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Apkarian A.V.
        • Sosa Y.
        • Sonty S.
        • Levy R.M.
        • Harden R.N.
        • Parrish T.B.
        • Gitelman D.R.
        Chronic back pain is associated with decreased prefrontal and thalamic gray matter density.
        J Neurosci. 2004; 24: 10410-10415
        • Basbaum A.I.
        • Fields H.L.
        The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: Further studies on the anatomy of pain modulation.
        J Comp Neurol. 1979; 187: 513-531
        • Beck A.T.
        • Ward C.H.
        • Mendelson M.
        • Mock J.
        • Erbaugh J.
        An inventory for measuring depression.
        Arch Gen Psychiatry. 1961; 4: 561-571
        • Blood A.J.
        • Zatorre R.J.
        Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion.
        Proc Natl Acad Sci U S A. 2001; 98: 11818-11823
        • Blood A.J.
        • Zatorre R.J.
        • Bermudez P.
        • Evans A.C.
        Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions.
        Nat Neurosci. 1999; 2: 382-387
        • Bosma R.L.
        • Stroman P.W.
        Assessment of data acquisition parameters, and analysis techniques for noise reduction in spinal cord fMRI data.
        Magn Reson Imaging. 2014; 32: 473-481
        • Brown S.
        • Martinez M.J.
        • Parsons L.M.
        Passive music listening spontaneously engages limbic and paralimbic systems.
        Neuroreport. 2004; 15: 2033-2037
        • Bushnell M.C.
        • Duncan G.H.
        • Hofbauer R.K.
        • Ha B.
        • Chen J.I.
        • Carrier B.
        Pain perception: Is there a role for primary somatosensory cortex?.
        Proc Natl Acad Sci U S A. 1999; 96: 7705-7709
        • Cepeda M.S.
        • Carr D.B.
        • Lau J.
        • Alvarez H.
        Music for pain relief.
        Cochrane Database Syst Rev. 2006; : CD004843
        • Crowne D.P.
        • Marlowe D.
        A new scale of social desirability independent of psychopathology.
        J Consult Psychol. 1960; 24: 349-354
        • Davis K.D.
        • Wood M.L.
        • Crawley A.P.
        • Mikulis D.J.
        fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation.
        Neuroreport. 1995; 7: 321-325
        • Dreher J.C.
        • Schmidt P.J.
        • Kohn P.
        • Furman D.
        • Rubinow D.
        • Berman K.F.
        Menstrual cycle phase modulates reward-related neural function in women.
        Proc Natl Acad Sci U S A. 2007; 104: 2465-2470
        • Dunckley P.
        • Aziz Q.
        • Wise R.
        • Brooks J.
        • Tracey I.
        • Chang L.
        Attentional modulation of visceral and somatic pain..
        Neurogastroenterology & Motility. 2007; 19: 569-577
        • Eippert F.
        • Finsterbusch J.
        • Bingel U.
        • Buchel C.
        Direct evidence for spinal cord involvement in placebo analgesia..
        Science. 2009; 326: 404
        • Fields H.L.
        Pain modulation: Expectation, opioid analgesia and virtual pain.
        Prog Brain Res. 2000; 122: 245-253
        • Fields H.L.
        • Basbaum A.I.
        • Clanton C.H.
        • Anderson S.D.
        Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons.
        Brain Res. 1977; 126: 441-453
        • Figley C.R.
        • Stroman P.W.
        Development and validation of retrospective spinal cord motion time-course estimates (RESPITE) for spin-echo spinal fMRI: Improved sensitivity and specificity by means of a motion-compensating general linear model analysis.
        NeuroImage. 2009; 44: 421-427
        • Gardner W.J.
        • Licklider J.C.
        • Weisz A.Z.
        Suppression of pain by sound..
        Science. 1960; 132: 32
        • Goldstein A.
        Thrills in response to music and other stimuli.
        Physiol Psychol. 1980; 8: 126-129
        • Good M.
        Effects of relaxation and music on postoperative pain: A review.
        J Adv Nurs. 1996; 24: 905-914
        • Kenntner-Mabiala R.
        • Gorges S.
        • Alpers G.W.
        • Lehmann A.C.
        • Pauli P.
        Musically induced arousal affects pain perception in females but not in males: A psychophysiological examination.
        Biol Psychol. 2007; 75: 19-23
        • Knight W.E.
        • Rickard N.S.
        Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females.
        J Music Ther. 2001; 38: 254-272
        • Koelsch S.
        • Fritz T.
        • Cramon D.Y.
        • Muller K.
        • Friederici A.D.
        Investigating emotion with music: An fMRI study.
        Hum Brain Mapp. 2006; 27: 239-250
        • Kuhtz-Buschbeck J.P.
        • Andresen W.
        • Gobel S.
        • Gilster R.
        • Stick C.
        Thermoreception and nociception of the skin: A classic paper of Bessou and Perl and analyses of thermal sensitivity during a student laboratory exercise.
        Adv Physiol Educ. 2010; 34: 25-34
        • Levitin D.J.
        • Menon V.
        Musical structure is processed in “language” areas of the brain: A possible role for Brodmann Area 47 in temporal coherence.
        NeuroImage. 2003; 20: 2142-2152
        • Lorenz J.
        • Minoshima S.
        • Casey K.L.
        Keeping pain out of mind: The role of the dorsolateral prefrontal cortex in pain modulation.
        Brain. 2003; 126: 1079-1091
        • Maess B.
        • Koelsch S.
        • Gunter T.C.
        • Friederici A.D.
        Musical syntax is processed in Broca's area: An MEG study.
        Nat Neurosci. 2001; 4: 540-545
        • Mai J.K.
        • Assheuer J.
        • Paxinos G.
        Atlas of the Human Brain.
        Academic Press, San Diego1997
        • Menon V.
        • Levitin D.J.
        The rewards of music listening: Response and physiological connectivity of the mesolimbic system.
        NeuroImage. 2005; 28: 175-184
        • Millan M.J.
        The induction of pain: An integrative review.
        Prog Neurobiol. 1999; 57: 1-164
        • Millan M.J.
        Descending control of pain.
        Prog Neurobiol. 2002; 66: 355-474
        • Mitterschiffthaler M.T.
        • Fu C.H.
        • Dalton J.A.
        • Andrew C.M.
        • Williams S.C.
        A functional MRI study of happy and sad affective states induced by classical music.
        Hum Brain Mapp. 2007; 28: 1150-1162
        • Mouraux A.
        • Diukova A.
        • Lee M.C.
        • Wise R.G.
        • Iannetti G.D.
        A multisensory investigation of the functional significance of the “pain matrix”.
        Neuroimage. 2011; 54: 2237-2249
        • Murphy K.
        • Bodurka J.
        • Bandettini P.A.
        How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration..
        Neuroimage. 2007; 34: 565-574
        • Myronenko A.
        • Song X.
        Image registration by minimization of residual complexity.
        CVPR IEEE. 2009; 29: 49-56
        • Myronenko A.
        • Song X.
        Intensity-based image registration by minimizing residual complexity.
        IEEE Trans Med Imaging. 2010; 29: 1882-1891
        • Oliveras J.L.
        • Besson J.M.
        • Guilbaud G.
        • Liebeski J.C.
        Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in cat.
        Exp Brain Res. 1974; 20: 32-44
        • Peyron R.
        • Garcia-Larrea L.
        • Gregoire M.C.
        • Costes N.
        • Convers P.
        • Lavenne F.
        • Mauguiere F.
        • Michel D.
        • Laurent B.
        Haemodynamic brain responses to acute pain in humans: sensory and attentional networks..
        Brain. 1999; 122: 1765-1780
        • Peyron R.
        • Laurent B.
        • Garcia-Larrea L.
        Functional imaging of brain responses to pain. A review and meta-analysis (2000).
        Clin Neurophysiol. 2000; 30: 263-288
        • Price D.D.
        • Hu J.W.
        • Dubner R.
        • Gracely R.H.
        Peripheral suppression of first pain and central summation of second pain evoked by noxious heat pulses.
        Pain. 1977; 3: 57-68
        • Price D.D.
        • Hull C.D.
        • Buchwald N.A.
        Intracellular responses of dorsal horn cells to cutaneous and sural nerve A and C fiber stimuli.
        Exp Neurol. 1971; 33: 291-309
        • Roy M.
        • Peretz I.
        • Rainville P.
        Emotional valence contributes to music-induced analgesia.
        Pain. 2008; 134: 140-147
        • Salimpoor V.N.
        • van den Bosch I.
        • Kovacevic N.
        • McIntosh A.R.
        • Dagher A.
        • Zatorre R.J.
        Interactions between the nucleus accumbens and auditory cortices predict music reward value.
        Science. 2013; 340: 216-219
        • Senapati A.K.
        • Lagraize S.C.
        • Huntington P.J.
        • Wilson H.D.
        • Fuchs P.N.
        • Peng Y.B.
        Electrical stimulation of the anterior cingulate cortex reduces responses of rat dorsal horn neurons to mechanical stimuli.
        J Neurophysiol. 2005; 94: 845-851
      1. Spielberger CD, Gorsuch R, Lushene RE. The state-trait anxiety inventory (test manual). Palo Alto, Consulting Psychologists, 1970

        • Staud R.
        • Cannon R.C.
        • Mauderli A.P.
        • Robinson M.E.
        • Price D.D.
        • Vierck Jr., C.J.
        Temporal summation of pain from mechanical stimulation of muscle tissue in normal controls and subjects with fibromyalgia syndrome..
        Pain. 2003; 102: 87-95
        • Staud R.
        • Craggs J.G.
        • Robinson M.E.
        • Perlstein W.M.
        • Price D.D.
        Brain activity related to temporal summation of C-fiber evoked pain.
        Pain. 2007; 129: 130-142
        • Staud R.
        • Vierck C.J.
        • Cannon R.L.
        • Mauderli A.P.
        • Price D.D.
        Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome..
        Pain. 2001; 91: 165-175
        • Stroman P.W.
        • Coe B.C.
        • Munoz D.P.
        Influence of attention focus on neural activity in the human spinal cord during thermal sensory stimulation..
        Magn Reson Imaging 29. 2011; 1: 9-18
        • Stroman P.W.
        • Figley C.R.
        • Cahill C.M.
        Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem.
        Magn Reson Imaging. 2008; 26: 809-814
        • Stroman P.W.
        • Kornelsen J.
        • Lawrence J.
        An improved method for spinal functional MRI with large volume coverage of the spinal cord..
        J Magn Reson Imaging. 2005; 21: 520-526
        • Stroman P.W.
        • Wheeler-Kingshott C.
        • Bacon M.
        • Schwab J.M.
        • Bosma R.
        • Brooks J.
        • Cadotte D.
        • Carlstedt T.
        • Ciccarelli O.
        • Cohen-Adad J.
        • Curt A.
        • Evangelou N.
        • Fehlings M.G.
        • Filippi M.
        • Kelley B.J.
        • Kollias S.
        • Mackay A.
        • Porro C.A.
        • Smith S.
        • Strittmatter S.M.
        • Summers P.
        • Tracey I.
        The current state-of-the-art of spinal cord imaging: Methods.
        Neuroimage. 2014; 84: 1070-1081
        • Sullivan M.J.
        • Bishop S.
        • Pivik J.
        The pain catastrophizing scale. Development and validation.
        Psychol Assess. 1995; 7: 524-532
        • Taylor J.J.
        • Borckardt J.J.
        • George M.S.
        Endogenous opioids mediate left dorsolateral prefrontal cortex rTMS-induced analgesia.
        Pain. 2012; 24: 1219-1225
        • Tracey I.
        • Ploghaus A.
        • Gati J.S.
        • Clare S.
        • Smith S.
        • Menon R.S.
        • Matthews P.M.
        Imaging attentional modulation of pain in the periaqueductal gray in humans.
        J Neurosci. 2002; 22: 2748-2752
        • Vierck Jr., C.J.
        • Cannon R.L.
        • Fry G.
        • Maixner W.
        • Whitsel B.L.
        Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode..
        J Neurophysiol. 1997; 78: 992-1002
        • Villemure C.
        • Bushnell M.C.
        Mood influences supraspinal pain processing separately from attention.
        J Neurosci. 2009; 29: 705-715
        • Wheeler-Kingshott C.A.
        • Stroman P.W.
        • Schwab J.M.
        • Bacon M.
        • Bosma R.
        • Brooks J.
        • Cadotte D.W.
        • Carlstedt T.
        • Ciccarelli O.
        • Cohen-Adad J.
        • Curt A.
        • Evangelou N.
        • Fehlings M.G.
        • Filippi M.
        • Kelley B.J.
        • Kollias S.
        • Mackay A.
        • Porro C.A.
        • Smith S.
        • Strittmatter S.M.
        • Summers P.
        • Thompson A.J.
        • Tracey I.
        The current state-of-the-art of spinal cord imaging: Applications.
        Neuroimage. 2014; 84: 1082-1093
        • Worsley K.J.
        • Friston K.J.
        Analysis of fMRI time-series revisited—again.
        NeuroImage. 1995; 2: 173-181