Advertisement

Analgesic Response to Intravenous Ketamine Is Linked to a Circulating microRNA Signature in Female Patients With Complex Regional Pain Syndrome

      Highlights

      • We studied ketamine treatment–induced miRNA alterations in blood from patients with CRPS.
      • Differential miRNA expression was observed in whole blood before and after treatment.
      • Before therapy, 33 miRNAs differed between responders and poor responders.
      • Lower pretreatment levels of miR-548d-5p may contribute to higher UDP-GT activity.
      • Circulating miRNAs can be potential biomarkers in predicting treatment response.

      Abstract

      Although ketamine is beneficial in treating complex regional pain syndrome (CRPS), a subset of patients respond poorly to therapy. We investigated treatment-induced microRNA (miRNA) changes and their predictive validity in determining treatment outcome by assessing miRNA changes in whole blood from patients with CRPS. Blood samples from female patients were collected before and after 5 days of intravenous ketamine administration. Seven patients were responders and 6 were poor responders. Differential miRNA expression was observed in whole blood before and after treatment. In addition, 33 miRNAs differed between responders and poor responders before therapy, suggesting the predictive utility of miRNAs as biomarkers. Investigation of the mechanistic significance of hsa-miR-548d-5p downregulation in poor responders showed that this miRNA can downregulate UDP-glucuronosyltransferase UGT1A1 mRNA. Poor responders had a higher conjugated/unconjugated bilirubin ratio, indicating increased UGT1A1 activity. We propose that lower pretreatment levels of miR-548d-5p may result in higher UDP-GT activity, leading to higher levels of inactive glucuronide conjugates, thereby minimizing the therapeutic efficacy of ketamine in poor responders. Differences in miRNA signatures can provide molecular insights distinguishing responders from poor responders. Extending this approach to other treatment and outcome assessments might permit stratification of patients for maximal therapeutic outcome.

      Perspective

      This study suggests the usefulness of circulating miRNAs as potential biomarkers. Assessing miRNA signatures before and after treatment demonstrated miRNA alterations from therapy; differences in miRNA signature in responders and poor responders before therapy indicate prognostic value. Mechanistic studies on altered miRNAs can provide new insights into disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdallah C.G.
        • Sanacora G.
        • Duman R.S.
        • Krystal J.H.
        Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics.
        Annu Rev Med. 2015; 66: 509-523
        • Ammari M.
        • Jorgensen C.
        • Apparailly F.
        Impact of microRNAs on the understanding and treatment of rheumatoid arthritis.
        Curr Opin Rheumatol. 2013; 25: 225-233
        • Andersen H.
        • Duroux M.
        • Gazerani P.
        Serum microRNA signatures in migraineurs during attacks and in pain-free periods.
        Mol Neurobiol. 2015; ([ePub ahead of print])https://doi.org/10.1007/s12035-015-9106-5
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Bjersing J.L.
        • Lundborg C.
        • Bokarewa M.I.
        • Mannerkorpi K.
        Profile of cerebrospinal microRNAs in fibromyalgia.
        PLoS One. 2013; 8: e78762
        • Borchers A.T.
        • Gershwin M.E.
        Complex regional pain syndrome: a comprehensive and critical review.
        Autoimmun Rev. 2014; 13: 242-265
        • Borsook D.
        Ketamine and chronic pain–going the distance.
        Pain. 2009; 145: 271
        • Bruehl S.
        An update on the pathophysiology of complex regional pain syndrome.
        Anesthesiology. 2010; 113: 713-725
        • Correll G.E.
        • Maleki J.
        • Gracely E.J.
        • Muir J.J.
        • Harbut R.E.
        Subanesthetic ketamine infusion therapy: a retrospective analysis of a novel therapeutic approach to complex regional pain syndrome.
        Pain Med. 2004; 5: 263-275
        • Dahan A.
        • Olofsen E.
        • Sigtermans M.
        • Noppers I.
        • Niesters M.
        • Aarts L.
        • Bauer M.
        • Sarton E.
        Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain.
        Eur J Pain. 2011; 15: 258-267
        • De Guire V.
        • Robitaille R.
        • Tetreault N.
        • Guerin R.
        • Menard C.
        • Bambace N.
        • Sapieha P.
        Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges.
        Clin Biochem. 2013; 46: 846-860
        • de Mos M.
        • Sturkenboom M.C.
        • Huygen F.J.
        Current understandings on complex regional pain syndrome.
        Pain Pract. 2009; 9: 86-99
        • El Andaloussi S.
        • Mager I.
        • Breakefield X.O.
        • Wood M.J.
        Extracellular vesicles: biology and emerging therapeutic opportunities.
        Nat Rev Drug Discov. 2013; 12: 347-357
        • Fourie N.H.
        • Peace R.M.
        • Abey S.K.
        • Sherwin L.B.
        • Rahim-Williams B.
        • Smyser P.A.
        • Wiley J.W.
        • Henderson W.A.
        Elevated circulating miR-150 and miR-342-3p in patients with irritable bowel syndrome.
        Exp Mol Pathol. 2014; 96: 422-425
        • Friedman R.C.
        • Farh K.K.
        • Burge C.B.
        • Bartel D.P.
        Most mammalian mRNAs are conserved targets of microRNAs.
        Genome Res. 2009; 19: 92-105
        • Gheinani A.
        • Burkhard F.
        • Monastyrskaya K.
        Deciphering microRNA code in pain and inflammation: lessons from bladder pain syndrome.
        Cell Mol Life Sci. 2013; 70: 3773-3789
        • Gierthmuhlen J.
        • Binder A.
        • Baron R.
        Mechanism-based treatment in complex regional pain syndromes.
        Nat Rev Neurol. 2014; 10: 518-528
        • Goldberg M.E.
        • Domsky R.
        • Scaringe D.
        • Hirsh R.
        • Dotson J.
        • Sharaf I.
        • Torjman M.C.
        • Schwartzman R.J.
        Multi-day low dose ketamine infusion for the treatment of complex regional pain syndrome.
        Pain Physician. 2005; 8: 175-179
        • Goldberg M.E.
        • Torjman M.C.
        • Schwartzman R.J.
        • Mager D.E.
        • Wainer I.W.
        Pharmacodynamic profiles of ketamine (R)- and (S)- with 5-day inpatient infusion for the treatment of complex regional pain syndrome.
        Pain Physician. 2010; 13: 379-387
        • Goldberg M.E.
        • Torjman M.C.
        • Schwartzman R.J.
        • Mager D.E.
        • Wainer I.W.
        Enantioselective pharmacokinetics of (R)- and (S)-ketamine after a 5-day infusion in patients with complex regional pain syndrome.
        Chirality. 2011; 23: 138-143
        • Griffiths-Jones S.
        • Grocock R.J.
        • van Dongen S.
        • Bateman A.
        • Enright A.J.
        miRBase: microRNA sequences, targets and gene nomenclature.
        Nucleic Acids Res. 2006; 34: D140-D144
        • Harden R.N.
        • Bruehl S.
        • Perez R.S.
        • Birklein F.
        • Marinus J.
        • Maihofner C.
        • Lubenow T.
        • Buvanendran A.
        • Mackey S.
        • Graciosa J.
        • Mogilevski M.
        • Ramsden C.
        • Chont M.
        • Vatine J.J.
        Validation of proposed diagnostic criteria (the “Budapest Criteria”) for complex regional pain syndrome.
        Pain. 2010; 150: 268-274
        • Hijazi Y.
        • Bodonian C.
        • Bolon M.
        • Salord F.
        • Boulieu R.
        Pharmacokinetics and haemodynamics of ketamine in intensive care patients with brain or spinal cord injury.
        Br J Anaesth. 2003; 90: 155-160
        • Hijazi Y.
        • Boulieu R.
        Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes.
        Drug Metab Dispos. 2002; 30: 853-858
        • Kiefer R.T.
        • Rohr P.
        • Ploppa A.
        • Dieterich H.J.
        • Grothusen J.
        • Koffler S.
        • Altemeyer K.H.
        • Unertl K.
        • Schwartzman R.J.
        Efficacy of ketamine in anesthetic dosage for the treatment of refractory complex regional pain syndrome: an open-label phase II study.
        Pain Med. 2008; 9: 1173-1201
        • Koffler S.P.
        • Hampstead B.M.
        • Irani F.
        • Tinker J.
        • Kiefer R.T.
        • Rohr P.
        • Schwartzman R.J.
        The neurocognitive effects of 5 day anesthetic ketamine for the treatment of refractory complex regional pain syndrome.
        Arch Clin Neuropsychol. 2007; 22: 719-729
        • Kola I.
        • Landis J.
        Can the pharmaceutical industry reduce attrition rates?.
        Nat Rev Drug Discov. 2004; 3: 711-715
        • Leung L.Y.
        • Baillie T.A.
        Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine.
        J Med Chem. 1986; 29: 2396-2399
        • Liu B.
        • Li J.
        • Cairns M.J.
        Identifying miRNAs, targets and functions.
        Brief Bioinform. 2014; 15: 1-19
        • Mackenzie P.I.
        • Bock K.W.
        • Burchell B.
        • Guillemette C.
        • Ikushiro S.
        • Iyanagi T.
        • Miners J.O.
        • Owens I.S.
        • Nebert D.W.
        Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily.
        Pharmacogenet Genomics. 2005; 15: 677-685
        • Maihofner C.
        • Seifert F.
        • Markovic K.
        Complex regional pain syndromes: new pathophysiological concepts and therapies.
        Eur J Neurol. 2010; 17: 649-660
        • McDonald M.K.
        • Ajit S.K.
        MicroRNA biology and pain.
        in: Theodore J.P. Gregory D. Progress in Molecular Biology and Translational Science. Academic Press, London2015: 215-249
        • McDonald M.K.
        • Tian Y.
        • Qureshi R.A.
        • Gormley M.
        • Ertel A.
        • Gao R.
        • Aradillas Lopez E.
        • Alexander G.M.
        • Sacan A.
        • Fortina P.
        • Ajit S.K.
        Functional significance of macrophage-derived exosomes in inflammation and pain.
        Pain. 2014; 155: 1527-1539
        • Mendell J.T.
        • Olson E.N.
        MicroRNAs in stress signaling and human disease.
        Cell. 2012; 148: 1172-1187
        • Moaddel R.
        • Luckenbaugh D.
        • Xie Y.
        • Villaseñor A.
        • Brutsche N.
        • Machado-Vieira R.
        • Ramamoorthy A.
        • Lorenzo M.
        • Garcia A.
        • Bernier M.
        • Torjman M.
        • Barbas C.
        • Zarate Jr., C.
        • Wainer I.
        D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression.
        Psychopharmacology. 2015; 232: 399-409
        • Moaddel R.
        • Venkata S.L.
        • Tanga M.J.
        • Bupp J.E.
        • Green C.E.
        • Iyer L.
        • Furimsky A.
        • Goldberg M.E.
        • Torjman M.C.
        • Wainer I.W.
        A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome.
        Talanta. 2010; 82: 1892-1904
        • O'Connell N.E.
        • Wand B.M.
        • McAuley J.
        • Marston L.
        • Moseley G.L.
        Interventions for treating pain and disability in adults with complex regional pain syndrome.
        Cochrane Database Syst Rev. 2013; : CD009416
        • Ohlsson Teague E.M.
        • Print C.G.
        • Hull M.L.
        The role of microRNAs in endometriosis and associated reproductive conditions.
        Hum Reprod Update. 2010; 16: 142-165
        • Orlova I.A.
        • Alexander G.M.
        • Qureshi R.A.
        • Sacan A.
        • Graziano A.
        • Barrett J.E.
        • Schwartzman R.J.
        • Ajit S.K.
        MicroRNA modulation in complex regional pain syndrome.
        J Transl Med. 2011; 9: 195
        • Ortiz R.
        • Niciu M.J.
        • Lukkahati N.
        • Saligan L.N.
        • Nugent A.C.
        • Luckenbaugh D.A.
        • Machado-Vieira R.
        • Zarate Jr., C.A.
        Shank3 as a potential biomarker of antidepressant response to ketamine and its neural correlates in bipolar depression.
        J Affect Disord. 2015; 172: 307-311
        • Paul R.K.
        • Singh N.S.
        • Khadeer M.
        • Moaddel R.
        • Sanghvi M.
        • Green C.E.
        • O'Loughlin K.
        • Torjman M.C.
        • Bernier M.
        • Wainer I.W.
        (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function.
        Anesthesiology. 2014; 121: 149-159
        • Peterson S.M.
        • Thompson J.A.
        • Ufkin M.L.
        • Sathyanarayana P.
        • Liaw L.
        • Congdon C.B.
        Common features of microRNA target prediction tools.
        Front Genet. 2014; 5: 23
        • Sabia M.
        • Hirsh R.
        • Torjman M.
        • Wainer I.
        • Cooper N.
        • Domsky R.
        • Goldberg M.
        Advances in translational neuropathic research: example of enantioselective pharmacokinetic–pharmacodynamic modeling of ketamine-induced pain relief in complex regional pain syndrome.
        Curr Pain Headache Rep. 2011; 15: 207-214
        • Sawynok J.
        Topical and peripheral ketamine as an analgesic.
        Anesth Analg. 2014; 119: 170-178
        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative C(T) method.
        Nat Protoc. 2008; 3: 1101-1108
        • Schopman N.C.T.
        • Heynen S.
        • Haasnoot J.
        • Berkhout B.
        A miRNA-tRNA mix-up: tRNA origin of proposed miRNA.
        RNA Biol. 2010; 7: 573-576
        • Schwartzman R.J.
        • Alexander G.M.
        • Grothusen J.R.
        The use of ketamine in complex regional pain syndrome: possible mechanisms.
        Expert Rev Neurother. 2011; 11: 719-734
        • Schwartzman R.J.
        • Alexander G.M.
        • Grothusen J.R.
        • Paylor T.
        • Reichenberger E.
        • Perreault M.
        Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: a double-blind placebo controlled study.
        Pain. 2009; 147: 107-115
        • Schwartzman R.J.
        • Erwin K.L.
        • Alexander G.M.
        The natural history of complex regional pain syndrome.
        Clin J Pain. 2009; 25: 273-280
        • Shen N.
        • Liang D.
        • Tang Y.
        • de Vries N.
        • Tak P.P.
        MicroRNAs–novel regulators of systemic lupus erythematosus pathogenesis.
        Nat Rev Rheumatol. 2012; 8: 701-709
        • Sigtermans M.J.
        • van Hilten J.J.
        • Bauer M.C.
        • Arbous M.S.
        • Marinus J.
        • Sarton E.Y.
        • Dahan A.
        Ketamine produces effective and long-term pain relief in patients with complex regional pain syndrome type 1.
        Pain. 2009; 145: 304-311
        • Singh N.S.
        • Zarate Jr., C.A.
        • Moaddel R.
        • Bernier M.
        • Wainer I.W.
        What is hydroxynorketamine and what can it bring to neurotherapeutics?.
        Expert Rev Neurother. 2014; 14: 1239-1242
        • Sivertsson L.
        • Ek M.
        • Darnell M.
        • Edebert I.
        • Ingelman-Sundberg M.
        • Neve E.P.A.
        CYP3A4 catalytic activity is induced in confluent Huh7 hepatoma cells.
        Drug Metab Dispos. 2010; 38: 995-1002
        • Stoorvogel W.
        Functional transfer of microRNA by exosomes.
        Blood. 2012; 119: 646-648
        • Strimbu K.
        • Tavel J.A.
        What are biomarkers?.
        Curr Opin HIV AIDS. 2010; 5: 463-466
        • Turfus S.C.
        • Parkin M.C.
        • Cowan D.A.
        • Halket J.M.
        • Smith N.W.
        • Braithwaite R.A.
        • Elliot S.P.
        • Steventon G.B.
        • Kicman A.T.
        Use of human microsomes and deuterated substrates: an alternative approach for the identification of novel metabolites of ketamine by mass spectrometry.
        Drug Metab Dispos. 2009; 37: 1769-1778
        • Uchaipichat V.
        • Raungrut P.
        • Chau N.
        • Janchawee B.
        • Evans A.M.
        • Miners J.O.
        Effects of ketamine on human UDP-glucuronosyltransferases in vitro predict potential drug-drug interactions arising from ketamine inhibition of codeine and morphine glucuronidation.
        Drug Metab Dispos. 2011; 39: 1324-1328
        • Villaseñor A.
        • Ramamoorthy A.
        • Silva dos Santos M.
        • Lorenzo M.P.
        • Laje G.
        • Zarate C.
        • Barbas C.
        • Wainer I.W.
        A pilot study of plasma metabolomic patterns from patients treated with ketamine for bipolar depression: evidence for a response-related difference in mitochondrial networks.
        Br J Pharmacol. 2014; 171: 2230-2242
        • Witwer K.W.
        Circulating MicroRNA biomarker studies: pitfalls and potential solutions.
        Clin Chem. 2015; 61: 56-63
        • Woodcock J.
        • Witter J.
        • Dionne R.A.
        Stimulating the development of mechanism-based, individualized pain therapies.
        Nat Rev Drug Discov. 2007; 6: 703-710
        • Yang J-j
        • Wang N.
        • Yang C.
        • Shi J-y
        • Yu H-y
        • Hashimoto K.
        Serum interleukin-6 is a predictive biomarker for ketamine’s antidepressant effect in treatment-resistant patients with major depression.
        Biol Psychiatry. 2015; 77: e19-e20
        • Zarate Jr., C.A.
        • Brutsche N.
        • Laje G.
        • Luckenbaugh D.A.
        • Venkata S.L.
        • Ramamoorthy A.
        • Moaddel R.
        • Wainer I.W.
        Relationship of ketamine's plasma metabolites with response, diagnosis, and side effects in major depression.
        Biol Psychiatry. 2012; 72: 331-338
        • Zhao X.
        • Venkata S.L.
        • Moaddel R.
        • Luckenbaugh D.A.
        • Brutsche N.E.
        • Ibrahim L.
        • Zarate Jr., C.A.
        • Mager D.E.
        • Wainer I.W.
        Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression.
        Br J Clin Pharmacol. 2012; 74: 304-314