Original Report| Volume 17, ISSUE 1, P36-49, January 2016

Peripheral Neuritis Trauma in Pigs: A Neuropathic Pain Model

Published:October 06, 2015DOI:


      • PNT in pigs caused sensitivity to mechanical stimulation and mechanical allodynia.
      • PNT in pigs caused behavior changes but minor to non-existent motor dysfunction.
      • All behavior parameters were altered after treatment with gabapentin or morphine. Aprepitant failed to relieve any of the pain-related symptoms.
      • mRNA analysis of the site of injury indicates an inflammation phase followed by a neurogenic phase.
      • Spinal cord mRNA analysis shows an increase in a microglia marker and a later increase in BDNF.


      The use of rodents in preclinical studies has contributed greatly to our understanding of the pathophysiology of chronic neuropathic pain. These animal models are limited because of their poor clinical translation. We developed a pig model for chronic pain caused by surgically induced peripheral neuritis trauma (PNT). Seventy-five percent of the animals exhibited mechanical and tactile allodynia, which are indicative of painful neuropathy, by day 28 after surgery. Importantly, the PNT-injured pigs retained their ability to walk or to stand on their injured leg. Messenger RNA analysis of acute inflammatory cytokines calcitonin gene-related peptide and brain-derived neurotrophic factor at the site of injury suggests transient inflammation followed by a persistent high level of neurologic markers. Gabapentin and morphine effectively inhibited hypersensitivity to von Frey filaments and to feather stimuli, and reversed spontaneous pain-related behavior in a dose-related manner. No analgesic effect was detected in PNT-injured pigs after treatment with aprepitant, similar to observations in humans and contrary to observations in rodents. In conclusion, PNT-induced trauma in pigs may comprise a valid preclinical model for the study of the chronification of peripheral nerve injury and for the study of new pain therapies.


      This article presents the characterization of a new peripheral neuritis trauma (PNT) model in pigs. The pig PNT model could help close the translational gap between preclinical and clinical responses and may contribute to improved efficacy or safety of candidate drugs.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Balkowiec-Iskra E.
        • Vermehren-Schmaedick A.
        • Balkowiec A.
        Tumor necrosis factor-alpha increases brain-derived neurotrophic factor expression in trigeminal ganglion neurons in an activity-dependent manner.
        Neuroscience. 2011; 180: 322-333
        • Bancroft J.D.
        • Gamble M.
        Theory and Practice of Histological Techniques.
        7th ed. Churchill Livingstone, Edinburgh2013
        • Baptista A.F.
        • Gomes J.R.
        • Oliveira J.T.
        • Santos S.M.
        • Vannier-Santos M.A.
        • Martinez A.M.
        High- and low-frequency transcutaneous electrical nerve stimulation delay sciatic nerve regeneration after crush lesion in the mouse.
        J Peripher Nerv Syst. 2008; 13: 71-80
        • Bennett G.J.
        • Xie Y.K.
        A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man.
        Pain. 1988; 33: 87-107
        • Castel D.
        • Willentz E.
        • Doron O.
        • Brenner O.
        • Meilin S.
        Characterization of a porcine model of post-operative pain.
        Eur J Pain. 2014; 18: 496-505
        • Ceyhan G.O.
        • Deucker S.
        • Demir I.E.
        • Erkan M.
        • Schmelz M.
        • Bergmann F.
        • Muller M.W.
        • Giese T.
        • Buchler M.W.
        • Giese N.A.
        • Friess H.
        Neural fractalkine expression is closely linked to pain and pancreatic neuritis in human chronic pancreatitis.
        Lab Invest. 2009; 89: 347-361
        • Chang C.Y.
        • Challa C.K.
        • Shah J.
        • Eloy J.D.
        Gabapentin in acute postoperative pain management.
        Biomed Res Int. 2014; 631756: 2014
        • Chaplan S.R.
        • Bach F.W.
        • Pogrel J.W.
        • Chung J.M.
        • Yaksh T.L.
        Quantitative assessment of tactile allodynia in the rat paw.
        J Neurosci Methods. 1994; 53: 55-63
        • Decosterd I.
        • Woolf C.J.
        Spared nerve injury: an animal model of persistent peripheral neuropathic pain.
        Pain. 2000; 87: 149-158
        • Di Giminiani P.
        • Petersen L.J.
        • Herskin M.S.
        Nociceptive responses to thermal and mechanical stimulations in awake pigs.
        Eur J Pain. 2012; 17: 638-648
        • Dusch M.
        • Schley M.
        • Obreja O.
        • Forsch E.
        • Schmelz M.
        • Rukwied R.
        Comparison of electrically induced flare response patterns in human and pig skin.
        Inflamm Res. 2009; 58: 639-648
        • Guo T.Z.
        • Wei T.
        • Shi X.
        • Li W.W.
        • Hou S.
        • Wang L.
        • Tsujikawa K.
        • Rice K.C.
        • Cheng K.
        • Clark D.J.
        • Kingery W.S.
        Neuropeptide deficient mice have attenuated nociceptive, vascular, and inflammatory changes in a tibia fracture model of complex regional pain syndrome.
        Mol Pain. 2012; 8: 85
        • Hill R.
        NK1 (substance P) receptor antagonists–why are they not analgesic in humans?.
        Trends Pharmacol Sci. 2000; 21: 244-246
        • Hsu M.
        • Stevenson F.F.
        Wallerian degeneration and recovery of motor nerves after multiple focused cold therapies.
        Muscle Nerve. 2014; 51: 268-275
        • Huskey S.E.
        • Dean B.J.
        • Doss G.A.
        • Wang Z.
        • Hop C.E.
        • Anari R.
        • Finke P.E.
        • Robichaud A.J.
        • Zhang M.
        • Wang B.
        • Strauss J.R.
        • Cunningham P.K.
        • Feeney W.P.
        • Franklin R.B.
        • Baillie T.A.
        • Chiu S.H.
        The metabolic disposition of aprepitant, a substance P receptor antagonist, in rats and dogs.
        Drug Metab Dispos. 2004; 32: 246-258
        • Janczak A.M.
        • Ranheim B.
        • Fosse T.K.
        • Hild S.
        • Nordgreen J.
        • Moe R.O.
        • Zanella A.J.
        Factors affecting mechanical (nociceptive) thresholds in piglets.
        Vet Anaesth Analg. 2012; 39: 628-635
        • Ji R.R.
        • Suter M.R.
        p38 MAPK, microglial signaling, and neuropathic pain.
        Mol Pain. 2007; 3: 33
        • Juranek J.K.
        • Aleshin A.
        • Rattigan E.M.
        • Johnson L.
        • Qu W.
        • Song F.
        • Ananthakrishnan R.
        • Quadri N.
        • Yan S.D.
        • Ramasamy R.
        • Schmidt A.M.
        • Geddis M.S.
        Morphological changes and immunohistochemical expression of RAGE and its ligands in the sciatic nerve of hyperglycemic pig (Sus scrofa).
        Biochem Insights. 2010; 2010: 47-59
        • Kim S.H.
        • Chung J.M.
        An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat.
        Pain. 1992; 50: 355-363
        • Kukanich B.
        • Cohen R.L.
        Pharmacokinetics of oral gabapentin in greyhound dogs.
        Vet J. 2009; 187: 133-135
        • Kundu A.
        • Harreby K.R.
        • Jensen W.
        Comparison of median and ulnar nerve morphology of Danish Landrace pigs and Gottingen mini pigs.
        in: Annual Conference of the International Functional Electrical Stimulation Society (IFESS). 2012 (Alberta, Canada)
        • Larsen M.O.
        • Rolin B.
        Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research.
        ILAR J. 2004; 45: 303-313
        • Lecybyl R.
        • Acosta J.
        • Ghoshdastidar J.
        • Stringfellow K.
        • Hanna M.
        Validation, reproducibility and safety of trans dermal electrical stimulation in chronic pain patients and healthy volunteers.
        BMC Neurol. 2010; 10: 5
        • Lee S.
        • Zhao Y.Q.
        • Ribeiro-da-Silva A.
        • Zhang J.
        Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation.
        Mol Pain. 2010; 6: 79
        • Leem J.W.
        • Hwang J.H.
        • Hwang S.J.
        • Park H.
        • Kim M.K.
        • Choi Y.
        The role of peripheral N-methyl-D-aspartate receptors in Freund's complete adjuvant induced mechanical hyperalgesia in rats.
        Neurosci Lett. 2001; 297: 155-158
        • Lindia J.A.
        • McGowan E.
        • Jochnowitz N.
        • Abbadie C.
        Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain.
        J Pain. 2005; 6: 434-438
        • Malavasi L.M.
        • Nyman G.
        • Augustsson H.
        • Jacobson M.
        • Jensen-Waern M.
        Effects of epidural morphine and transdermal fentanyl analgesia on physiology and behaviour after abdominal surgery in pigs.
        Lab Anim. 2006; 40: 16-27
        • McLean M.J.
        Epilepsia. 1995; 36: S73-S86
        • Miletic G.
        • Hanson E.N.
        • Miletic V.
        Brain-derived neurotrophic factor-elicited or sciatic ligation-associated phosphorylation of cyclic AMP response element binding protein in the rat spinal dorsal horn is reduced by block of tyrosine kinase receptors.
        Neurosci Lett. 2004; 361: 269-271
        • Mogil J.S.
        Animal models of pain: progress and challenges.
        Nat Rev Neurosci. 2009; 10: 283-294
        • Mogil J.S.
        • Crager S.E.
        What should we be measuring in behavioral studies of chronic pain in animals?.
        Pain. 2004; 112: 12-15
        • Mogil J.S.
        • Davis K.D.
        • Derbyshire S.W.
        The necessity of animal models in pain research.
        Pain. 2010; 151: 12-17
        • Nichols C.M.
        • Myckatyn T.M.
        • Rickman S.R.
        • Fox I.K.
        • Hadlock T.
        • Mackinnon S.E.
        Choosing the correct functional assay: a comprehensive assessment of functional tests in the rat.
        Behav Brain Res. 2005; 163: 143-158
        • Obreja O.
        • Schmelz M.
        Single-fiber recordings of unmyelinated afferents in pig.
        Neurosci Lett. 2010; 470: 175-179
        • Pertin M.
        • Gosselin R.D.
        • Decosterd I.
        The spared nerve injury model of neuropathic pain.
        Methods Mol Biol. 2012; 851: 205-212
        • Phillips J.B.
        • Smit X.
        • De Zoysa N.
        • Afoke A.
        • Brown R.A.
        Peripheral nerves in the rat exhibit localized heterogeneity of tensile properties during limb movement.
        J Physiol. 2004; 557: 879-887
        • Reyes L.
        • Tinworth K.D.
        • Li K.M.
        • Yau D.F.
        • Waters K.A.
        Observer-blinded comparison of two nonopioid analgesics for postoperative pain in piglets.
        Pharmacol Biochem Behav. 2002; 73: 521-528
        • Rigaud M.
        • Gemes G.
        • Barabas M.E.
        • Chernoff D.I.
        • Abram S.E.
        • Stucky C.L.
        • Hogan Q.H.
        Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain.
        Pain. 2008; 136: 188-201
        • Seltzer Z.
        • Dubner R.
        • Shir Y.
        A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury.
        Pain. 1990; 43: 205-218
        • Siao K.T.
        • Pypendop B.H.
        • Ilkiw J.E.
        Pharmacokinetics of gabapentin in cats.
        Am J Vet Res. 2010; 71: 817-821
        • Smith P.A.
        BDNF: no gain without pain?.
        Neuroscience. 2014; 283: 107-123
        • Sun S.
        • Cao H.
        • Han M.
        • Li T.T.
        • Pan H.L.
        • Zhao Z.Q.
        • Zhang Y.Q.
        New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis.
        Pain. 2007; 129: 64-75
        • Sunderland S.
        Nerves and Nerve Injuries.
        2nd ed. Churchill Livingstone, Edinburgh1978
        • Swindle M.M.
        • Makin A.
        • Herron A.J.
        • Clubb Jr., F.J.
        • Frazier K.S.
        Swine as models in biomedical research and toxicology testing.
        Vet Pathol. 2011; 49: 344-356
        • Taves S.
        • Berta T.
        • Chen G.
        • Ji R.R.
        Microglia and spinal cord synaptic plasticity in persistent pain.
        Neural Plast. 2013; 753656: 2013
        • Tracey I.
        • Mantyh P.W.
        The cerebral signature for pain perception and its modulation.
        Neuron. 2007; 55: 377-391
        • Varejao A.S.
        • Cabrita A.M.
        • Meek M.F.
        • Bulas-Cruz J.
        • Melo-Pinto P.
        • Raimondo S.
        • Geuna S.
        • Giacobini-Robecchi M.G.
        Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp.
        J Neurotrauma. 2004; 21: 1652-1670
        • Verge G.M.
        • Milligan E.D.
        • Maier S.F.
        • Watkins L.R.
        • Naeve G.S.
        • Foster A.C.
        Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions.
        Eur J Neurosci. 2004; 20: 1150-1160
        • Wang L.X.
        • Wang Z.J.
        Animal and cellular models of chronic pain.
        Adv Drug Deliv Rev. 2003; 55: 949-965
        • Yajima Y.
        • Narita M.
        • Matsumoto N.
        • Suzuki T.
        Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice.
        Brain Res. 2002; 958: 338-346
        • Yajima Y.
        • Narita M.
        • Usui A.
        • Kaneko C.
        • Miyatake M.
        • Yamaguchi T.
        • Tamaki H.
        • Wachi H.
        • Seyama Y.
        • Suzuki T.
        Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice.
        J Neurochem. 2005; 93: 584-594
        • Yeganeh Mogadam A.
        • Fazel M.R.
        • Parviz S.
        Comparison of analgesic effect between gabapentin and diclofenac on post-operative pain in patients undergoing tonsillectomy.
        Arch Trauma Res. 2012; 1: 108-111
        • Zhang X.J.
        • Zhang T.W.
        • Hu S.J.
        • Xu H.
        Behavioral assessments of the aversive quality of pain in animals.
        Neurosci Bull. 2011; 27: 61-67
        • Zhu W.
        • Acosta C.
        • MacNeil B.
        • Cortes C.
        • Intrater H.
        • Gong Y.
        • Namaka M.
        Elevated expression of fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) in the dorsal root ganglia and spinal cord in experimental autoimmune encephalomyelitis: implications in multiple sclerosis-induced neuropathic pain.
        Biomed Res Int. 2013; 2013: 1-14
        • Zhuang Z.Y.
        • Kawasaki Y.
        • Tan P.H.
        • Wen Y.R.
        • Huang J.
        • Ji R.R.
        Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine.
        Brain Behav Immun. 2007; 21: 642-651
        • Zimmermann M.
        Ethical guidelines for investigations of experimental pain in conscious animals.
        Pain. 1983; 16: 109-110