Advertisement
Original Report| Volume 17, ISSUE 1, P50-64, January 2016

Bedding Material Affects Mechanical Thresholds, Heat Thresholds, and Texture Preference

Published:October 06, 2015DOI:https://doi.org/10.1016/j.jpain.2015.08.014

      Highlights

      • Bedding material affected evoked baseline behavioral mechanical and heat thresholds.
      • Bedding affected the dynamic range of mechanical thresholds after acute CFA inflammation.
      • Chronic CFA revealed the effects of bedding on mechanical and heat thresholds.
      • Nonreflexive ongoing behaviors were unaffected by bedding materials.

      Abstract

      It has long been known that the bedding type on which animals are housed can affect breeding behavior and cage environment, yet little is known about its effects on evoked behavior responses or nonreflexive behaviors. C57BL/6 mice were housed for 2 weeks on 1 of 5 bedding types: aspen Sani-Chips (standard bedding for our institute), ALPHA-Dri, Cellu-Dri, Pure-o’Cel, or TEK-Fresh. Mice housed on aspen exhibited the lowest (most sensitive) mechanical thresholds and those on TEK-Fresh exhibited 3-fold higher thresholds. Although bedding type had no effect on responses to punctate or dynamic light touch stimuli, TEK-Fresh-housed animals exhibited greater responsiveness in a noxious needle assay than did those housed on the other bedding types. Heat sensitivity was also affected by bedding because animals housed on aspen exhibited the shortest (most sensitive) latencies to withdrawal, whereas those housed on TEK-Fresh had the longest (least sensitive) latencies to response. Slight differences between bedding types were also seen in a moderate cold temperature preference assay. A modified tactile conditioned place preference chamber assay revealed that animals preferred TEK-Fresh to aspen bedding. Bedding type had no effect in a nonreflexive wheel running assay. In both acute (2 day) and chronic (5 week) inflammation induced by injection of complete Freund's adjuvant in the hindpaw, mechanical thresholds were reduced in all groups regardless of bedding type, but TEK-Fresh and Pure-o’Cel groups exhibited a greater dynamic range between controls and inflamed cohorts than aspen-housed mice.

      Perspective

      These findings indicate that the bedding type routinely used to house animals can markedly affect the dynamic range of mechanical and heat behavior assays under normal and tissue injury conditions. Among beddings tested, TEK-Fresh bedding resulted in the least sensitive baseline thresholds for mechanical and thermal stimuli and the greatest dynamic range after tissue injury. Therefore, selection of routine cage bedding material should be carefully considered for animals that will be tested in behavioral somatosensory assays.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ago A.
        • Gonda T.
        • Takechi M.
        • Takeuchi T.
        • Kawakami K.
        Preferences for paper bedding material of the laboratory mice.
        Exp Anim. 2002; 51: 157-161
        • Baez D.
        • Raddatz N.
        • Ferreira G.
        • Gonzalez C.
        • Latorre R.
        Gating of thermally activated channels.
        Curr Top Membr. 2014; 74: 51-87
        • Basbaum A.I.
        • Bautista D.M.
        • Scherrer G.
        • Julius D.
        Cellular and molecular mechanisms of pain.
        Cell. 2009; 139: 267-284
        • Bautista D.M.
        • Jordt S.E.
        • Nikai T.
        • Tsuruda P.R.
        • Read A.J.
        • Poblete J.
        • Yamoah E.N.
        • Basbaum A.I.
        • Julius D.
        TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.
        Cell. 2006; 124: 1269-1282
        • Bautista D.M.
        • Siemens J.
        • Glazer J.M.
        • Tsuruda P.R.
        • Basbaum A.I.
        • Stucky C.L.
        • Jordt S.E.
        • Julius D.
        The menthol receptor TRPM8 is the principal detector of environmental cold.
        Nature. 2007; 448: 204-208
        • Blom H.J.
        • Van Tintelen G.
        • Van Vorstenbosch C.J.
        • Baumans V.
        • Beynen A.C.
        Preferences of mice and rats for types of bedding material.
        Lab Anim. 1996; 30: 234-244
        • Bonin R.P.
        • Bories C.
        • De Koninck Y.
        A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments.
        Mol Pain. 2014; 10: 26
        • Caterina M.J.
        • Schumacher M.A.
        • Tominaga M.
        • Rosen T.A.
        • Levine J.D.
        • Julius D.
        The capsaicin receptor: a heat-activated ion channel in the pain pathway.
        Nature. 1997; 389: 816-824
        • Chaplan S.R.
        • Bach F.W.
        • Pogrel J.W.
        • Chung J.M.
        • Yaksh T.L.
        Quantitative assessment of tactile allodynia in the rat paw.
        J Neurosci Methods. 1994; 53: 55-63
        • Chillingworth N.L.
        • Donaldson L.F.
        Characterisation of a Freund’s complete adjuvant-induced model of chronic arthritis in mice.
        J Neurosci Methods. 2003; 128: 45-52
        • Cobos E.J.
        • Ghasemlou N.
        • Araldi D.
        • Segal D.
        • Duong K.
        • Woolf C.J.
        Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia.
        Pain. 2012; 153: 876-884
        • Coste B.
        • Mathur J.
        • Schmidt M.
        • Earley T.J.
        • Ranade S.
        • Petrus M.J.
        • Dubin A.E.
        • Patapoutian A.
        Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels.
        Science. 2010; 330: 55-60
        • Crawford A.C.
        • Evans M.G.
        • Fettiplace R.
        Activation and adaptation of transducer currents in turtle hair cells.
        J Physiol. 1989; 419: 405-434
        • Dixon W.
        Efficient analysis of experimental observations.
        Annu Rev Pharmacol Toxicol. 1980; 20: 441-462
        • Dubin A.E.
        • Schmidt M.
        • Mathur J.
        • Petrus M.J.
        • Xiao B.
        • Coste B.
        • Patapoutian A.
        Inflammatory signals enhance piezo2-mediated mechanosensitive currents.
        Cell Rep. 2012; 2: 511-517
        • Fuchs E.
        Keratins and the skin.
        Annu Rev Cell Dev Biol. 1995; 11: 123-153
        • Gabriel A.F.
        • Paoletti G.
        • Della Seta D.
        • Panelli R.
        • Marcus M.A.
        • Farabollini F.
        • Carli G.
        • Joosten E.A.
        Enriched environment and the recovery from inflammatory pain: social versus physical aspects and their interaction.
        Behav Brain Res. 2010; 208: 90-95
        • Garrison S.R.
        • Dietrich A.
        • Stucky C.L.
        TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons.
        J Neurophysiol. 2012; 107: 913-922
        • Garrison S.R.
        • Stucky C.L.
        Contribution of transient receptor potential ankyrin 1 to chronic pain in aged mice with complete Freund’s adjuvant–induced arthritis.
        Arthritis Rheumatol. 2014; 66: 2380-2390
        • Garrison S.R.
        • Weyer A.D.
        • Barabas M.E.
        • Beutler B.A.
        • Stucky C.L.
        A gain-of-function voltage-gated sodium channel 1.8 mutation drives intense hyperexcitability of A- and C-fiber neurons.
        Pain. 2014; 155: 896-905
        • Hargreaves K.
        • Dubner R.
        • Brown F.
        • Flores C.
        • Joris J.
        A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia.
        Pain. 1988; 32: 77-88
      1. Harlan: 7099 TEK-Fresh. Available at: http://www.harlan.com/products_and_services/research_models_and_services/bedding_and_enrichment_products/contact_bedding/tekfresh.hl Accessed January 26, 2015

        • Hillery C.A.
        • Kerstein P.C.
        • Vilceanu D.
        • Barabas M.E.
        • Retherford D.
        • Brandow A.M.
        • Wandersee N.J.
        • Stucky C.L.
        Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease.
        Blood. 2011; 118: 3376-3383
        • Hogan Q.
        • Sapunar D.
        • Modric-Jednacak K.
        • McCallum J.B.
        Detection of neuropathic pain in a rat model of peripheral nerve injury.
        Anesthesiology. 2004; 101: 476-487
        • Horn M.J.
        • Hudson S.V.
        • Bostrom L.A.
        • Cooper D.M.
        Effects of cage density, sanitation frequency, and bedding type on animal wellbeing and health and cage environment in mice and rats.
        J Am Assoc Lab Anim Sci. 2012; 51: 781-788
        • Ikeda R.
        • Cha M.
        • Ling J.
        • Jia Z.
        • Coyle D.
        • Gu J.G.
        Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses.
        Cell. 2014; 157: 664-675
      2. Merskey H. Bogduk N. Classification of Chronic Pain. IASP Press, Seattle, WA1994
        • Jackson E.
        • Demarest K.
        • Eckert W.J.
        • Nadav T.
        • Cates L.N.
        • Howard H.
        • Roberts A.J.
        Aspen shaving versus chip bedding: effects on breeding and behavior.
        Lab Anim. 2015; 49: 46-56
        • Kawakami K.
        • Shimosaki S.
        • Tongu M.
        • Kobayashi Y.
        • Nabika T.
        • Nomura M.
        • Yamada T.
        Evaluation of bedding and nesting materials for laboratory mice by preference tests.
        Exp Anim. 2007; 56: 363-368
        • Kawakami K.
        • Xiao B.
        • Ohno R.
        • Ferdaus M.Z.
        • Tongu M.
        • Yamada K.
        • Yamada T.
        • Nomura M.
        • Kobayashi Y.
        • Nabika T.
        Color preferences of laboratory mice for bedding materials: evaluation using radiotelemetry.
        Exp Anim. 2012; 61: 109-117
        • Keeble J.
        • Russell F.
        • Curtis B.
        • Starr A.
        • Pinter E.
        • Brain S.D.
        Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation.
        Arthritis Rheum. 2005; 52: 3248-3256
        • Koltzenburg M.
        • Stucky C.L.
        • Lewin G.R.
        Receptive properties of mouse sensory neurons innervating hairy skin.
        J Neurophysiol. 1997; 78: 1841-1850
        • Konecka A.M.
        • Sroczynska I.
        Circadian rhythm of pain in male mice.
        Gen Pharmacol. 1998; 31: 809-810
        • Kwan K.Y.
        • Allchorne A.J.
        • Vollrath M.A.
        • Christensen A.P.
        • Zhang D.S.
        • Woolf C.J.
        • Corey D.P.
        TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction.
        Neuron. 2006; 50: 277-289
        • Latremoliere A.
        • Woolf C.J.
        Central sensitization: a generator of pain hypersensitivity by central neural plasticity.
        J Pain. 2009; 10: 895-926
        • Lee H.
        • Iida T.
        • Mizuno A.
        • Suzuki M.
        • Caterina M.J.
        Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4.
        J Neurosci. 2005; 25: 1304-1310
        • Lennertz R.C.
        • Kossyreva E.A.
        • Smith A.K.
        • Stucky C.L.
        TRPA1 mediates mechanical sensitization in nociceptors during inflammation.
        PLoS One. 2012; 7: e43597
        • Liang D.Y.
        • Li X.
        • Shi X.
        • Sun Y.
        • Sahbaie P.
        • Li W.W.
        • Clark J.D.
        The complement component C5a receptor mediates pain and inflammation in a postsurgical pain model.
        Pain. 2012; 153: 366-372
        • Liu H.X.
        • Tian J.B.
        • Luo F.
        • Jiang Y.H.
        • Deng Z.G.
        • Xiong L.
        • Liu C.
        • Wang J.S.
        • Han J.S.
        Repeated 100 Hz TENS for the treatment of chronic inflammatory hyperalgesia and suppression of spinal release of substance P in monoarthritic rats.
        Evid Based Complement Alternat Med. 2007; 4: 65-75
        • Löken L.S.
        • Wessberg J.
        • Morrison I.
        • McGlone F.
        • Olausson H.
        Coding of pleasant touch by unmyelinated afferents in humans.
        Nat Neurosci. 2009; 12: 547-548
        • Lolignier S.
        • Eijkelkamp N.
        • Wood J.N.
        Mechanical allodynia.
        Pflugers Arch. 2014; 467: 133-139
        • Lumpkin E.A.
        • Caterina M.J.
        Mechanisms of sensory transduction in the skin.
        Nature. 2007; 445: 858-865
        • Lumpkin E.A.
        • Marshall K.L.
        • Nelson A.M.
        The cell biology of touch.
        J Cell Biol. 2010; 191: 237-248
        • Maksimovic S.
        • Nakatani M.
        • Baba Y.
        • Nelson A.M.
        • Marshall K.L.
        • Wellnitz S.A.
        • Firozi P.
        • Woo S.H.
        • Ranade S.
        • Patapoutian A.
        • Lumpkin E.A.
        Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors.
        Nature. 2014; 509: 617-621
        • Manser C.E.
        • Broom D.M.
        • Overend P.
        • Morris T.H.
        Investigations into the preferences of laboratory rats for nest-boxes and nesting materials.
        Lab Anim. 1998; 32: 23-35
        • Minett M.S.
        • Eijkelkamp N.
        • Wood J.N.
        Significant determinants of mouse pain behaviour.
        PLoS One. 2014; 9: e104458
      3. P.J. Murphy Forest Products: Aspen Sani-Chips. Available at: http://www.pjmurphy.net/index.php/animal-bedding#ab5 Accessed January 28, 2015.

        • Tanaka T.
        • Ogata A.
        • Inomata A.
        • Nakae D.
        Effects of different types of bedding materials on behavioral development in laboratory CD1 mice (Mus musculus).
        Birth Defects Res B Dev Reprod Toxicol. 2014; 101: 393-401
        • Petrus M.
        • Peier A.M.
        • Bandell M.
        • Hwang S.W.
        • Huynh T.
        • Olney N.
        • Jegla T.
        • Patapoutian A.
        A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition.
        Mol Pain. 2007; 3: 40
        • Ranade S.S.
        • Woo S.H.
        • Dubin A.E.
        • Moshourab R.A.
        • Wetzel C.
        • Petrus M.
        • Mathur J.
        • Bégay V.
        • Coste B.
        • Mainquist J.
        • Wilson A.J.
        • Francisco A.G.
        • Reddy K.
        • Qiu Z.
        • Wood J.N.
        • Lewin G.R.
        • Patapoutian A.
        Piezo2 is the major transducer of mechanical forces for touch sensation in mice.
        Nature. 2014; 516: 121-125
        • Robinson I.
        • Dowdall T.
        • Meert T.F.
        Development of neuropathic pain is affected by bedding texture in two models of peripheral nerve injury in rats.
        Neurosci Lett. 2004; 368: 107-111
      4. Shepherd Specialty Papers: ALPHA-Dri. Available at: http://www.ssponline.com/alpha_dri.htm Accessed January 28, 2015

      5. Shepherd Specialty Papers: Cellu-Dri Soft. Available at : http://www.ssponline.com/cellu_dri.htm Accessed January 28, 2015

      6. Shepherd Specialty Papers: Enviro-dri. Available at: http://www.ssponline.com/enviro_dri.htm Accessed February 23, 2015

        • Smith E.
        • Stockwell J.D.
        • Schweitzer I.
        • Langley S.H.
        • Smith A.L.
        Evaluation of cage micro-environment of mice housed on various types of bedding materials.
        Contemp Top Lab Anim Sci. 2004; 43: 12-17
        • Sorge R.E.
        • Martin L.J.
        • Isbester K.A.
        • Sotocinal S.G.
        • Rosen S.
        • Tuttle A.H.
        • Wieskopf J.S.
        • Acland E.L.
        • Dokova A.
        • Kadoura B.
        • Leger P.
        • Mapplebeck J.C.S.
        • McPhail M.
        • Delaney A.
        • Wigerblad G.
        • Schumann A.P.
        • Quinn T.
        • Frasnelli J.
        • Svensson C.I.
        • Sternberg W.F.
        • Mogil J.S.
        Olfactory exposure to males, including men, causes stress and related analgesia in rodents.
        Nat Methods. 2014; 11: 629-632
      7. The Andersons Lab Bedding: Pure-o’Cel. Available at: http://www.andersonslabbedding.com/irradiated/pure-ocel-pb/ Accessed January 28, 2015

        • Vachon P.
        • Millecamps M.
        • Low L.
        • Thompsosn S.J.
        • Pailleux F.
        • Beaudry F.
        • Bushnell C.M.
        • Stone L.S.
        Alleviation of chronic neuropathic pain by environmental enrichment in mice well after the establishment of chronic pain.
        Behav Brain Funct. 2013; 9: 22
        • Vilceanu D.
        • Stucky C.L.
        TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons.
        PLoS One. 2010; 5: e12177
        • Vollrath M.A.
        • Kwan K.Y.
        • Corey D.P.
        The micromachinery of mechanotransduction in hair cells.
        Annu Rev Neurosci. 2010; 30: 339-365
        • Whitehouse M.W.
        Adjuvant arthritis 50 years on: the impact of the 1956 article by C. M. Pearson, “Development of arthritis, periarthritis and periostitis in rats given adjuvants.”.
        Inflamm Res. 2007; 56: 133-138
        • Woo S.H.
        • Ranade S.
        • Weyer A.D.
        • Dubin A.E.
        • Baba Y.
        • Qiu Z.
        • Petrus M.
        • Miyamoto T.
        • Reddy K.
        • Lumpkin E.A.
        • Stucky C.L.
        • Patapoutian A.
        Piezo2 is required for Merkel-cell mechanotransduction.
        Nature. 2014; 509: 622-626
        • Woolf C.J.
        • Thompson S.W.
        The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states.
        Pain. 1991; 44: 293-299
        • Woolf C.J.
        Central sensitization: implications for the diagnosis and treatment of pain.
        Pain. 2011; 152: S2-15
        • Woolf C.J.
        Windup and central sensitization are not equivalent [editorial].
        Pain. 1996; 66: 105-108
        • Zappia K.J.
        • Garrison S.R.
        • Hillery C.A.
        • Stucky C.L.
        Cold hypersensitivity increases with age in mice with sickle cell disease.
        Pain. 2014; 155: 1-10
        • Zhang Z.J.
        • Cao D.L.
        • Zhang X.
        • Ji R.R.
        • Gao Y.J.
        Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons.
        Pain. 2013; 154: 2185-2197