Advertisement

The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain

  • David A. Seminowicz
    Correspondence
    Address reprint requests to David A. Seminowicz, PhD, Department of Neural and Pain Sciences, University of Maryland School of Dentistry, 650 W Baltimore Street, 8 South, Baltimore, MD 21201.
    Affiliations
    Department of Neural and Pain Sciences, University of Maryland, School of Dentistry, Baltimore, Maryland

    Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland
    Search for articles by this author
  • Massieh Moayedi
    Affiliations
    Faculty of Dentistry, and University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author

      Highlights

      • The role of the dorsolateral prefrontal cortex (DLPFC) in pain remains unclear.
      • The DLPFC is abnormal in some chronic pain disorders.
      • These abnormalities are partially reversed with pain resolution.
      • Noninvasive DLPFC stimulation could successfully treat some chronic pains.

      Abstract

      The dorsolateral prefrontal cortex (DLPFC) is a functionally and structurally heterogeneous region and a key node of several brain networks, implicated in cognitive, affective, and sensory processing. As such, the DLPFC is commonly activated in experimental pain studies, and shows abnormally increased function in chronic pain populations. Furthermore, several studies have shown that some chronic pains are associated with decreased left DLPFC gray matter and that successful interventions can reverse this structural abnormality. In addition, studies have indicated that noninvasive stimulation of the left DLPFC effectively treats some chronic pains. In this article, we review the neuroimaging literature regarding the role of the DLPFC and its potential as a therapeutic target for chronic pain conditions, including studies showing the involvement of the DLPFC in encoding and modulating acute pain and studies demonstrating the reversal of DLPFC functional and structural abnormalities after successful interventions for chronic pain. We also review studies of noninvasive brain stimulation of the DLPFC showing acute pain modulation and some effectiveness as a treatment for certain chronic pain conditions. We further discuss the network architecture of the DLPFC, and postulate mechanisms by which DLPFC stimulation alleviates chronic pain. Future work testing these mechanisms will allow for more effective therapies.

      Perspective

      The structure and function of the DLPFC is abnormal in some chronic pain conditions. Upon successful resolution of pain, these abnormalities are reversed. Understanding the underlying mechanisms and the role of this region can lead to the development of an effective therapeutic target for some chronic pain conditions.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Allen M.
        • Dietz M.
        • Blair K.S.
        • van Beek M.
        • Rees G.
        • Vestergaard-Poulsen P.
        • Lutz A.
        • Roepstorff A.
        Cognitive-affective neural plasticity following active-controlled mindfulness intervention.
        J Neurosci. 2012; 32: 15601-15610
        • Apkarian A.V.
        • Baliki M.N.
        • Farmer M.A.
        • Tétreault P.
        • Vachon-Presseau E.
        Pain: Acute and chronic.
        in: Toga A.W. Brain Mapping. Academic Press, Waltham2015: 553-563
        • Apkarian A.V.
        • Sosa Y.
        • Sonty S.
        • Levy R.M.
        • Harden R.N.
        • Parrish T.B.
        • Gitelman D.R.
        Chronic back pain is associated with decreased prefrontal and thalamic gray matter density.
        J Neurosci. 2004; 24: 10410-10415
        • Atlas L.Y.
        • Bolger N.
        • Lindquist M.A.
        • Wager T.D.
        Brain mediators of predictive cue effects on perceived pain.
        J Neurosci. 2010; 30: 12964-12977
        • Barbey A.K.
        • Koenigs M.
        • Grafman J.
        Dorsolateral prefrontal contributions to human working memory.
        Cortex. 2013; 49: 1195-1205
        • Bidet-Caulet A.
        • Buchanan K.G.
        • Viswanath H.
        • Black J.
        • Scabini D.
        • Bonnet-Brilhault F.
        • Knight R.T.
        Impaired facilitatory mechanisms of auditory attention after damage of the lateral prefrontal cortex.
        Cereb Cortex. 2015; 25: 4126-4134
        • Bingel U.
        • Schoell E.
        • Buchel C.
        Imaging pain modulation in health and disease.
        Curr Opin Neurol. 2007; 20: 424-431
        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • Hyde J.S.
        Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
        Magn Res Med. 1995; 34: 537-541
        • Blankstein U.
        • Chen J.
        • Diamant N.E.
        • Davis K.D.
        Altered brain structure in irritable bowel syndrome: Potential contributions of pre-existing and disease-driven factors.
        Gastroenterology. 2010; 138: 1783-1789
        • Bornhovd K.
        • Quante M.
        • Glauche V.
        • Bromm B.
        • Weiller C.
        • Buchel C.
        Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: A single-trial fMRI study.
        Brain. 2002; 125: 1326-1336
        • Botvinick M.
        • Braver T.
        Motivation and cognitive control: From behavior to neural mechanism.
        Annu Rev Psychol. 2015; 66: 83-113
        • Brascher A.K.
        • Becker S.
        • Hoeppli M.E.
        • Schweinhardt P.
        Different brain circuitries mediating controllable and uncontrollable pain.
        J Neurosci. 2016; 36: 5013-5025
        • Brighina F.
        • De Tommaso M.
        • Giglia F.
        • Scalia S.
        • Cosentino G.
        • Puma A.
        • Panetta M.
        • Giglia G.
        • Fierro B.
        Modulation of pain perception by transcranial magnetic stimulation of left prefrontal cortex.
        J Headache Pain. 2011; 12: 185-191
        • Brighina F.
        • Piazza A.
        • Vitello G.
        • Aloisio A.
        • Palermo A.
        • Daniele O.
        • Fierro B.
        rTMS of the prefrontal cortex in the treatment of chronic migraine: A pilot study.
        J Neurol Sci. 2004; 227: 67-71
        • Buhle J.T.
        • Silvers J.A.
        • Wager T.D.
        • Lopez R.
        • Onyemekwu C.
        • Kober H.
        • Weber J.
        • Ochsner K.N.
        Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies.
        Cereb Cortex. 2014; 24: 2981-2990
        • Bushnell M.C.
        • Ceko M.
        • Low L.A.
        Cognitive and emotional control of pain and its disruption in chronic pain.
        Nat Rev Neurosci. 2013; 14: 502-511
        • Ceko M.
        • Shir Y.
        • Ouellet J.A.
        • Ware M.A.
        • Stone L.S.
        • Seminowicz D.A.
        Partial recovery of abnormal insula and dorsolateral prefrontal connectivity to cognitive networks in chronic low back pain after treatment.
        Hum Brain Mapp. 2015; 36: 2075-2092
        • Cieslik E.C.
        • Zilles K.
        • Caspers S.
        • Roski C.
        • Kellermann T.S.
        • Jakobs O.
        • Langner R.
        • Laird A.R.
        • Fox P.T.
        • Eickhoff S.B.
        Is there “one” DLPFC in cognitive action control? Evidence for heterogeneity from co-activation-based parcellation.
        Cereb Cortex. 2013; 23: 2677-2689
        • Cole M.W.
        • Schneider W.
        The cognitive control network: Integrated cortical regions with dissociable functions.
        Neuroimage. 2007; 37: 343-360
        • Conforto A.B.
        • Amaro Jr., E.
        • Goncalves A.L.
        • Mercante J.P.
        • Guendler V.Z.
        • Ferreira J.R.
        • Kirschner C.C.
        • Peres M.F.
        Randomized, proof-of-principle clinical trial of active transcranial magnetic stimulation in chronic migraine.
        Cephalalgia. 2014; 34: 464-472
        • Damoiseaux J.S.
        • Rombouts S.A.
        • Barkhof F.
        • Scheltens P.
        • Stam C.J.
        • Smith S.M.
        • Beckmann C.F.
        Consistent resting-state networks across healthy subjects.
        Proc Natl Acad Sci U S A. 2006; 103: 13848-13853
        • DaSilva A.F.
        • Becerra L.
        • Pendse G.
        • Chizh B.
        • Tully S.
        • Borsook D.
        Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain.
        PLoS One. 2008; 3: e3396
        • Davis K.D.
        • Moayedi M.
        Central mechanisms of pain revealed through functional and structural MRI.
        J Neuroimmune Pharmacol. 2013; 8: 518-534
        • Downar J.
        • Daskalakis Z.J.
        New targets for rTMS in depression: A review of convergent evidence.
        Brain Stimul. 2012; 6: 231-240
        • Duerden E.G.
        • Albanese M.C.
        Localization of pain-related brain activation: A meta-analysis of neuroimaging data.
        Hum Brain Mapp. 2013; 34: 109-149
        • Erpelding N.
        • Simons L.
        • Lebel A.
        • Serrano P.
        • Pielech M.
        • Prabhu S.
        • Becerra L.
        • Borsook D.
        Rapid treatment-induced brain changes in pediatric CRPS.
        Brain Struct Funct. 2016; 221: 1095-1111
        • Etkin A.
        • Buchel C.
        • Gross J.J.
        The neural bases of emotion regulation.
        Nat Rev Neurosci. 2015; 16: 693-700
        • Fox M.D.
        • Snyder A.Z.
        • Vincent J.L.
        • Corbetta M.
        • Van Essen D.C.
        • Raichle M.E.
        The human brain is intrinsically organized into dynamic, anticorrelated functional networks.
        Proc Natl Acad Sci U S A. 2005; 102: 9673-9678
        • Frank D.W.
        • Dewitt M.
        • Hudgens-Haney M.
        • Schaeffer D.J.
        • Ball B.H.
        • Schwarz N.F.
        • Hussein A.A.
        • Smart L.M.
        • Sabatinelli D.
        Emotion regulation: Quantitative meta-analysis of functional activation and deactivation.
        Neurosci Biobehav Rev. 2014; 45: 202-211
        • Freund W.
        • Klug R.
        • Weber F.
        • Stuber G.
        • Schmitz B.
        • Wunderlich A.P.
        Perception and suppression of thermally induced pain: An fMRI study.
        Somatosens Mot Res. 2009; 26: 1-10
        • Glasser M.F.
        • Coalson T.S.
        • Robinson E.C.
        • Hacker C.D.
        • Harwell J.
        • Yacoub E.
        • Ugurbil K.
        • Andersson J.
        • Beckmann C.F.
        • Jenkinson M.
        • Smith S.M.
        • Van Essen D.C.
        A multi-modal parcellation of human cerebral cortex.
        Nature. 2016; 536: 171-178
        • Grachev I.D.
        • Fredrickson B.E.
        • Apkarian A.V.
        Abnormal brain chemistry in chronic back pain: An in vivo proton magnetic resonance spectroscopy study.
        Pain. 2000; 89: 7-18
        • Grachev I.D.
        • Thomas P.S.
        • Ramachandran T.S.
        Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I).
        Brain Cogn. 2002; 49: 102-113
        • Graff-Guerrero A.
        • Gonzalez-Olvera J.
        • Fresan A.
        • Gomez-Martin D.
        • Mendez-Nunez J.C.
        • Pellicer F.
        Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain.
        Brain Res Cogn Brain Res. 2005; 25: 153-160
        • Gustin S.M.
        • Peck C.C.
        • Wilcox S.L.
        • Nash P.G.
        • Murray G.M.
        • Henderson L.A.
        Different pain, different brain: Thalamic anatomy in neuropathic and non-neuropathic chronic pain syndromes.
        J Neurosci. 2011; 31: 5956-5964
        • Hashmi J.A.
        • Baria A.T.
        • Baliki M.N.
        • Huang L.
        • Schnitzer T.J.
        • Apkarian A.V.
        Brain networks predicting placebo analgesia in a clinical trial for chronic back pain.
        Pain. 2012; 153: 2393-2402
        • Holle D.
        • Naegel S.
        • Krebs S.
        • Gaul C.
        • Gizewski E.
        • Diener H.C.
        • Katsarava Z.
        • Obermann M.
        Hypothalamic gray matter volume loss in hypnic headache.
        Ann Neurol. 2011; 69: 533-539
        • Hubbard C.S.
        • Khan S.A.
        • Keaser M.L.
        • Mathur V.A.
        • Goyal M.
        • Seminowicz D.A.
        Altered brain structure and function correlate with disease severity and pain catastrophizing in migraine patients.
        eNeuro. 2014; 1: e20.14
        • Hugdahl K.
        • Raichle M.E.
        • Mitra A.
        • Specht K.
        On the existence of a generalized non-specific task-dependent network.
        Front Hum Neurosci. 2015; 9: 430
        • Hutcherson C.A.
        • Goldin P.R.
        • Ochsner K.N.
        • Gabrieli J.D.
        • Barrett L.F.
        • Gross J.J.
        Attention and emotion: Does rating emotion alter neural responses to amusing and sad films?.
        Neuroimage. 2005; 27: 656-668
        • Iadarola M.J.
        • Berman K.F.
        • Zeffiro T.A.
        • Byas-Smith M.G.
        • Gracely R.H.
        • Max M.B.
        • Bennett G.J.
        Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET.
        Brain. 1998; 121: 931-947
        • Iannetti G.D.
        • Salomons T.V.
        • Moayedi M.
        • Mouraux A.
        • Davis K.D.
        Beyond metaphor: Contrasting mechanisms of social and physical pain.
        Trends Cogn Sci. 2013; 17: 371-378
        • Jeon H.A.
        • Friederici A.D.
        Degree of automaticity and the prefrontal cortex.
        Trends Cogn Sci. 2015; 19: 244-250
        • Kim J.H.
        • Suh S.I.
        • Seol H.Y.
        • Oh K.
        • Seo W.K.
        • Yu S.W.
        • Park K.W.
        • Koh S.B.
        Regional grey matter changes in patients with migraine: A voxel-based morphometry study.
        Cephalalgia. 2008; 28: 598-604
        • Koechlin E.
        Frontal pole function: What is specifically human?.
        Trends Cogn Sci. 2011; 15 (author reply: 243): 241
        • Kouneiher F.
        • Charron S.
        • Koechlin E.
        Motivation and cognitive control in the human prefrontal cortex.
        Nat Neurosci. 2009; 12: 939-945
        • Krummenacher P.
        • Candia V.
        • Folkers G.
        • Schedlowski M.
        • Schonbachler G.
        Prefrontal cortex modulates placebo analgesia.
        Pain. 2010; 148: 368-374
        • Kucyi A.
        • Davis K.D.
        The dynamic pain connectome.
        Trends Neurosci. 2015; 38: 86-95
        • Lefaucheur J.P.
        • Andre-Obadia N.
        • Antal A.
        • Ayache S.S.
        • Baeken C.
        • Benninger D.H.
        • Cantello R.M.
        • Cincotta M.
        • de Carvalho M.
        • De Ridder D.
        • Devanne H.
        • Di Lazzaro V.
        • Filipovic S.R.
        • Hummel F.C.
        • Jaaskelainen S.K.
        • Kimiskidis V.K.
        • Koch G.
        • Langguth B.
        • Nyffeler T.
        • Oliviero A.
        • Padberg F.
        • Poulet E.
        • Rossi S.
        • Rossini P.M.
        • Rothwell J.C.
        • Schonfeldt-Lecuona C.
        • Siebner H.R.
        • Slotema C.W.
        • Stagg C.J.
        • Valls-Sole J.
        • Ziemann U.
        • Paulus W.
        • Garcia-Larrea L.
        Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS).
        Clin Neurophysiol. 2014; 125: 2150-2206
        • Legrain V.
        • Iannetti G.D.
        • Plaghki L.
        • Mouraux A.
        The pain matrix reloaded: A salience detection system for the body.
        Prog Neurobiol. 2011; 93: 111-124
        • Lerch J.P.
        Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning.
        Neuroimage. 2011; 54: 2086-2095
        • Liu Y.
        • Bengson J.
        • Huang H.
        • Mangun G.R.
        • Ding M.
        Top-down modulation of neural activity in anticipatory visual attention: Control mechanisms revealed by simultaneous EEG-fMRI.
        Cereb Cortex. 2016; 26: 517-529
        • Liu S.
        • Erkkinen M.G.
        • Healey M.L.
        • Xu Y.
        • Swett K.E.
        • Chow H.M.
        • Braun A.R.
        Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process.
        Hum Brain Mapp. 2015; 36: 3351-3372
        • Loggia M.L.
        • Chonde D.B.
        • Akeju O.
        • Arabasz G.
        • Catana C.
        • Edwards R.R.
        • Hill E.
        • Hsu S.
        • Izquierdo-Garcia D.
        • Ji R.R.
        • Riley M.
        • Wasan A.D.
        • Zurcher N.R.
        • Albrecht D.S.
        • Vangel M.G.
        • Rosen B.R.
        • Napadow V.
        • Hooker J.M.
        Evidence for brain glial activation in chronic pain patients.
        Brain. 2015; 138: 604-615
        • Lorenz J.
        • Cross D.J.
        • Minoshima S.
        • Morrow T.J.
        • Paulson P.E.
        • Casey K.L.
        A unique representation of heat allodynia in the human brain.
        Neuron. 2002; 35: 383-393
        • Lorenz J.
        • Minoshima S.
        • Casey K.L.
        Keeping pain out of mind: The role of the dorsolateral prefrontal cortex in pain modulation.
        Brain. 2003; 126: 1079-1091
        • Moayedi M.
        • Salomons T.V.
        Brain imaging in experimental pain.
        in: Battaglia A. An Introduction to Pain and Nervous System Disorders. John Wiley & Sons Ltd, London2016: 225-248
        • Moayedi M.
        • Weissman-Fogel I.
        • Salomons T.V.
        • Crawley A.P.
        • Goldberg M.B.
        • Freeman B.V.
        • Tenenbaum H.C.
        • Davis K.D.
        White matter brain and trigeminal nerve abnormalities in temporomandibular disorder.
        Pain. 2012; 153: 1467-1477
        • Moens M.
        • Sunaert S.
        • Marien P.
        • Brouns R.
        • De Smedt A.
        • Droogmans S.
        • Van Schuerbeek P.
        • Peeters R.
        • Poelaert J.
        • Nuttin B.
        Spinal cord stimulation modulates cerebral function: an fMRI study.
        Neuroradiol. 2012; 54: 1399-1407
        • Moisset X.
        • de Andrade D.C.
        • Bouhassira D.
        From pulses to pain relief: An update on the mechanisms of rTMS-induced analgesic effects.
        Eur J Pain. 2016; 20: 689-700
        • Mylius V.
        • Jung M.
        • Menzler K.
        • Haag A.
        • Khader P.H.
        • Oertel W.H.
        • Rosenow F.
        • Lefaucheur J.P.
        Effects of transcranial direct current stimulation on pain perception and working memory.
        Eur J Pain. 2012; 16: 974-982
        • Nee D.E.
        • D’Esposito M.
        The hierarchical organization of the lateral prefrontal cortex.
        eLife. 2016; 5: e12112
        • Norman D.A.
        • Bobrow D.G.
        On data-limited and resource-limited processes.
        Cogn Psychol. 1975; 7: 44-64
        • Obermann M.
        • Nebel K.
        • Schumann C.
        • Holle D.
        • Gizewski E.R.
        • Maschke M.
        • Goadsby P.J.
        • Diener H.C.
        • Katsavara Z.
        Gray matter changes related to chronic posttraumatic headache.
        Neurology. 2009; 73: 978-993
        • Obermann M.
        • Rodriguez-Raecke R.
        • Naegel S.
        • Holle D.
        • Mueller D.
        • Yoon M.S.
        • Theysohn N.
        • Blex S.
        • Diener H.C.
        • Katsarava Z.
        Gray matter volume reduction reflects chronic pain in trigeminal neuralgia.
        Neuroimage. 2013; 74: 352-358
        • Okon-Singer H.
        • Hendler T.
        • Pessoa L.
        • Shackman A.J.
        The neurobiology of emotion-cognition interactions: Fundamental questions and strategies for future research.
        Front Hum Neurosci. 2015; 9: 58
        • Ongur D.
        • Ferry A.T.
        • Price J.L.
        Architectonic subdivision of the human orbital and medial prefrontal cortex.
        J Comp Neurol. 2003; 460: 425-449
        • Ongur D.
        • Price J.L.
        The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.
        Cereb Cortex. 2000; 10: 206-219
        • O’Reilly R.C.
        The what and how of prefrontal cortical organization.
        Trends Neurosci. 2010; 33: 355-361
        • Petrovic P.
        • Kalso E.
        • Petersson K.M.
        • Andersson J.
        • Fransson P.
        • Ingvar M.
        A prefrontal non-opioid mechanism in placebo analgesia.
        Pain. 2010; 150: 59-65
        • Philiastides M.G.
        • Auksztulewicz R.
        • Heekeren H.R.
        • Blankenburg F.
        Causal role of dorsolateral prefrontal cortex in human perceptual decision making.
        Curr Biol. 2011; 21: 980-983
        • Pomares F.B.
        • Funck T.
        • Feier N.A.
        • Roy S.
        • Daigle-Martel A.
        • Ceko M.
        • Narayanan S.
        • Araujo D.
        • Thiel A.
        • Stikov N.
        • Fitzcharles M.A.
        • Schweinhardt P.
        Histological underpinnings of grey matter changes in fibromyalgia investigated using multimodal brain imaging.
        J Neurosci. 2017; 37: 1090-1101
        • Rahnev D.
        • Nee D.E.
        • Riddle J.
        • Larson A.S.
        • D’Esposito M.
        Causal evidence for frontal cortex organization for perceptual decision making.
        Proc Natl Acad Sci U S A. 2016; 113: 6059-6064
        • Raichle M.E.
        • MacLeod A.M.
        • Snyder A.Z.
        • Powers W.J.
        • Gusnard D.A.
        • Shulman G.L.
        A default mode of brain function.
        Proc Natl Acad Sci U S A. 2001; 98: 676-682
        • Raij T.T.
        • Numminen J.
        • Narvanen S.
        • Hiltunen J.
        • Hari R.
        Strength of prefrontal activation predicts intensity of suggestion-induced pain.
        Hum Brain Mapp. 2009; 30: 2890-2897
        • Reid P.
        • Pridmore S.
        Improvement in chronic pain with transcranial magnetic stimulation. Aust N Z J Psychiatry.
        . 2001; 35: 252
        • Rocca M.A.
        • Ceccarelli A.
        • Falini A.
        • Colombo B.
        • Tortorella P.
        • Bernasconi L.
        • Comi G.
        • Scotti G.
        • Filippi M.
        Brain gray matter changes in migraine patients with T2-visible lesions: A 3-T MRI study.
        Stroke. 2006; 37: 1765-1770
        • Rodriguez-Raecke R.
        • Niemeier A.
        • Ihle K.
        • Ruether W.
        • May A.
        Brain gray matter decrease in chronic pain is the consequence and not the cause of pain.
        J Neurosci. 2009; 29: 13746-13750
        • Rodriguez-Raecke R.
        • Niemeier A.
        • Ihle K.
        • Ruether W.
        • May A.
        Structural brain changes in chronic pain reflect probably neither damage nor atrophy.
        PLoS One. 2013; 8: e54475
        • Rosen S.
        • Ham B.
        • Mogil J.S.
        Sex differences in neuroimmunity and pain.
        J Neurosci Res. 2017; 95: 500-508
        • Sagi Y.
        • Tavor I.
        • Hofstetter S.
        • Tzur-Moryosef S.
        • Blumenfeld-Katzir T.
        • Assaf Y.
        Learning in the fast lane: New insights into neuroplasticity.
        Neuron. 2012; 73: 1195-1203
        • Sallet J.
        • Mars R.B.
        • Noonan M.P.
        • Neubert F.X.
        • Jbabdi S.
        • O’Reilly J.X.
        • Filippini N.
        • Thomas A.G.
        • Rushworth M.F.
        The organization of dorsal frontal cortex in humans and macaques.
        J Neurosci. 2013; 33: 12255-12274
        • Salomons T.V.
        • Iannetti G.D.
        • Liang M.
        • Wood J.N.
        The “pain matrix” in pain-free individuals.
        JAMA Neurol. 2016; 73: 755-756
        • Schmidt-Wilcke T.
        • Ichesco E.
        • Hampson J.P.
        • Kairys A.
        • Peltier S.
        • Harte S.
        • Clauw D.J.
        • Harris R.E.
        Resting state connectivity correlates with drug and placebo response in fibromyalgia patients.
        NeuroImage Clin. 2014; 6: 252-261
        • Schmidt-Wilcke T.
        • Leinisch E.
        • Ganssbauer S.
        • Draganski B.
        • Bogdahn U.
        • Altmeppen J.
        • May A.
        Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients.
        Pain. 2006; 125: 89-97
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • Reiss A.L.
        • Greicius M.D.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Seifert F.
        • Maihofner C.
        Representation of cold allodynia in the human brain–a functional MRI study.
        Neuroimage. 2007; 35: 1168-1180
        • Seminowicz D.A.
        • Davis K.D.
        Cortical responses to pain in healthy individuals depends on pain catastrophizing.
        Pain. 2006; 120: 297-306
        • Seminowicz D.A.
        • Davis K.D.
        Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task.
        J Neurophysiol. 2007; 97: 3651-3659
        • Seminowicz D.A.
        • Labus J.S.
        • Bueller J.A.
        • Tillisch K.
        • Naliboff B.D.
        • Bushnell M.C.
        • Mayer E.A.
        Regional gray matter density changes in brains of patients with irritable bowel syndrome.
        Gastroenterology. 2010; 139: 48-57
        • Seminowicz D.A.
        • Shpaner M.
        • Keaser M.L.
        • Krauthamer G.M.
        • Mantegna J.
        • Dumas J.A.
        • Newhouse P.A.
        • Filippi C.G.
        • Keefe F.J.
        • Naylor M.R.
        Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain.
        J Pain. 2013; 14: 1573-1584
        • Seminowicz D.A.
        • Wideman T.H.
        • Naso L.
        • Hatami-Khoroushahi Z.
        • Fallatah S.
        • Ware M.A.
        • Jarzem P.
        • Bushnell M.C.
        • Shir Y.
        • Ouellet J.A.
        • Stone L.S.
        Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function.
        J Neurosci. 2011; 31: 7540-7550
        • Sevel L.S.
        • Letzen J.E.
        • Staud R.
        • Robinson M.E.
        Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls.
        Brain Connect. 2016; 6: 357-364
        • Smith S.M.
        • Fox P.T.
        • Miller K.L.
        • Glahn D.C.
        • Fox P.M.
        • Mackay C.E.
        • Filippini N.
        • Watkins K.E.
        • Toro R.
        • Laird A.R.
        • Beckmann C.F.
        Correspondence of the brain’s functional architecture during activation and rest.
        Proc Natl Acad Sci U S A. 2009; 106: 13040-13045
        • Sokol-Hessner P.
        • Hutcherson C.
        • Hare T.
        • Rangel A.
        Decision value computation in DLPFC and VMPFC adjusts to the available decision time.
        Eur J Neurosci. 2012; 35: 1065-1074
        • Szczepanski S.M.
        • Knight R.T.
        Insights into human behavior from lesions to the prefrontal cortex.
        Neuron. 2014; 83: 1002-1018
        • Taylor J.J.
        • Borckardt J.J.
        • George M.S.
        Endogenous opioids mediate left dorsolateral prefrontal cortex rTMS-induced analgesia.
        Pain. 2012; 153: 1219-1225
        • Tracey I.
        • Bushnell M.C.
        How neuroimaging studies have challenged us to rethink: Is chronic pain a disease?.
        J Pain. 2009; 10: 1113-1120
        • Treadway M.T.
        • Buckholtz J.W.
        • Martin J.W.
        • Jan K.
        • Asplund C.L.
        • Ginther M.R.
        • Jones O.D.
        • Marois R.
        Corticolimbic gating of emotion-driven punishment.
        Nat Neurosci. 2014; 17: 1270-1275
        • Tsuda M.
        • Beggs S.
        • Salter M.W.
        • Inoue K.
        Microglia and intractable chronic pain.
        Glia. 2013; 61: 55-61
        • Umezaki Y.
        • Badran B.W.
        • DeVries W.H.
        • Moss J.
        • Gonzales T.
        • George M.S.
        The efficacy of daily prefrontal repetitive transcranial magnetic stimulation (rTMS) for burning mouth syndrome (BMS): A randomized controlled single-blind study.
        Brain Stimul. 2016; 9: 234-242
        • Valfrè W.
        • Rainero I.
        • Bergui M.
        • Pinessi L.
        Voxel-based morphometry reveals gray matter abnormalities in migraine.
        Headache. 2008; 48: 109-117
        • GBD 2015 Disease and Injury Incidence and Prevalence Collaborators
        Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015.
        Lancet. 2016; 388: 1545-1602
        • Vossel S.
        • Geng J.J.
        • Fink G.R.
        Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles.
        Neuroscientist. 2014; 20: 150-159
        • Vossel S.
        • Weidner R.
        • Driver J.
        • Friston K.J.
        • Fink G.R.
        Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
        J Neurosci. 2012; 32: 10637-10648
        • Voytek B.
        • Davis M.
        • Yago E.
        • Barcelo F.
        • Vogel E.K.
        • Knight R.T.
        Dynamic neuroplasticity after human prefrontal cortex damage.
        Neuron. 2010; 68: 401-408
        • Wager T.D.
        • Rilling J.K.
        • Smith E.E.
        • Sokolik A.
        • Casey K.L.
        • Davidson R.J.
        • Kosslyn S.M.
        • Rose R.M.
        • Cohen J.D.
        Placebo-induced changes in FMRI in the anticipation and experience of pain.
        Science. 2004; 303: 1162-1167
        • Weissman-Fogel I.
        • Moayedi M.
        • Tenenbaum H.C.
        • Goldberg M.B.
        • Freeman B.V.
        • Davis K.D.
        Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks.
        Pain. 2011; 152: 384-396
        • Wiech K.
        • Kalisch R.
        • Weiskopf N.
        • Pleger B.
        • Stephan K.E.
        • Dolan R.J.
        Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain.
        J Neurosci. 2006; 26: 11501-11509
        • Yang Q.
        • Wang Z.
        • Yang L.
        • Xu Y.
        • Chen L.M.
        Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients.
        Hum Brain Mapp. 2017; 38: 1815-1832
        • Youssef A.M.
        • Gustin S.M.
        • Nash P.G.
        • Reeves J.M.
        • Petersen E.T.
        • Peck C.C.
        • Murray G.M.
        • Henderson L.A.
        Differential brain activity in subjects with painful trigeminal neuropathy and painful temporomandibular disorder.
        Pain. 2014; 155: 467-475
        • Zeidan F.
        • Emerson N.M.
        • Farris S.R.
        • Ray J.N.
        • Jung Y.
        • McHaffie J.G.
        • Coghill R.C.
        Mindfulness meditation-based pain relief employs different neural mechanisms than placebo and sham mindfulness meditation-induced analgesia.
        J Neurosci. 2015; 35: 15307-15325