Pain and Fatigue Variability Patterns Distinguish Subgroups of Fibromyalgia Patients

  • Emily J. Bartley
    Address reprint requests to Emily J. Bartley, PhD, University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence, 1329 SW 16th St., Suite 5192, Gainesville, FL 32610.
    Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida

    Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida
    Search for articles by this author
  • Michael E. Robinson
    Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida

    Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida

    Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida
    Search for articles by this author
  • Roland Staud
    Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, Florida

    Department of Medicine, University of Florida, Gainesville, Florida
    Search for articles by this author
Published:December 15, 2017DOI:


      • Fibromyalgia patients experience daily variability in pain, fatigue, and mood.
      • Differences in pain and social functioning emerged across variability clusters.
      • Targeting symptom variability may be an important clinical initiative.


      The current study examined between- and within-subject variability in pain-related symptoms as predictors of pain and fatigue, and identified patient subgroups on the basis of symptom variability characteristics. Two hundred fifty-six fibromyalgia (FM) patients completed daily diaries up to a period of 154 days and reported on symptoms of pain intensity, pain unpleasantness, fatigue, anxiety, and depressed mood. Measures of health status, quality of life, and somatic symptoms were obtained at baseline, and hierarchical linear modeling and cluster analyses were used. Significant intra- and interindividual variability in daily FM symptoms was observed. Higher levels of pain were associated with greater fluctuations in pain unpleasantness, fatigue, and depressed mood. Similar effects were observed for fatigue and individual variability in anxiety also emerged as a robust predictor. Three FM subgroups were revealed: low variability in symptoms (cluster 1), high symptom variability (cluster 2), and a mixed variability group characterized by low fluctuation in pain unpleasantness; moderate pain, fatigue, and depressed mood variability; and high anxiety variability (cluster 3). Cluster 3 exhibited lower social functioning and higher levels of pain, compared with cluster 1. These findings support the dynamic nature of FM pain and suggest the presence of FM subgroups on the basis of variation in mood and pain symptomatology.


      FM patients show significant intra- and interindividual variability in pain, mood, and fatigue. Subgroups in mood and pain-related variability emerged, with phenotypic clusters differing across levels of pain intensity and social functioning. Better understanding of the processes affecting pain variability may facilitate targeted treatments for the control of pain.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Allen K.D.
        • Coffman C.J.
        • Golightly Y.M.
        • Stechuchak K.M.
        • Keefe F.J.
        Daily pain variations among patients with hand, hip, and knee osteoarthritis.
        Osteoarthritis Cartilage. 2009; 17: 1275-1282
        • Allen K.D.
        • Golightly Y.M.
        • Olsen M.K.
        Pilot study of pain and coping among patients with osteoarthritis: A daily diary analysis.
        J Clin Rheumatol. 2006; 12: 118-123
        • Bellamy N.
        • Sothern R.B.
        • Campbell J.
        Rhythmic variations in pain perception in osteoarthritis of the knee.
        J Rheumatol. 1990; 17: 364-372
        • Boggero I.A.
        • Rojas-Ramirez M.V.
        • Carlson C.R.
        All fatigue is not created equal: The association of fatigue and its subtypes on pain interference in orofacial pain.
        Clin J Pain. 2016; 33: 231-237
        • Brazier J.E.
        • Harper R.
        • Jones N.
        • O'Cathain A.
        • Thomas K.
        • Usherwood T.
        • Westlake L.
        Validating the SF-36 health survey questionnaire: New outcome measure for primary care.
        BMJ. 1992; 305: 160-164
        • Christie A.
        • Dagfinrud H.
        • Mowinckel P.
        • Hagen K.B.
        Variation in fatigue may be poorly explained by pain: Results from a longitudinal, exploratory study.
        Rheumatol Int. 2016; 36: 279-282
        • de Souza J.B.
        • Goffaux P.
        • Julien N.
        • Potvin S.
        • Charest J.
        • Marchand S.
        Fibromyalgia subgroups: Profiling distinct subgroups using the Fibromyalgia Impact Questionnaire. A preliminary study.
        Rheumatol Int. 2009; 29: 509-515
        • de Wit R.
        • van Dam F.
        • Hanneman M.
        • Zandbelt L.
        • van Buuren A.
        • van der Heijden K.
        • Leenhouts G.
        • Loonstra S.
        • Abu-Saad H.H.
        Evaluation of the use of a pain diary in chronic cancer pain patients at home.
        Pain. 1999; 79: 89-99
        • Davis M.C.
        • Affleck G.
        • Zautra A.J.
        • Tennen H.
        Daily interpersonal events in pain patients: Applying action theory to chronic illness.
        J Clin Psychol. 2006; 62: 1097-1113
        • Docampo E.
        • Collado A.
        • Escaramis G.
        • Carbonell J.
        • Rivera J.
        • Vidal J.
        • Alegre J.
        • Rabionet R.
        • Estivill X.
        Cluster analysis of clinical data identifies fibromyalgia subgroups.
        PLoS One. 2013; 8: e74873
        • Enders C.K.
        Applied Missing Data Analysis.
        Guilford Press, New York, NY2010
        • Feldman S.I.
        • Downey G.
        • Schaffer-Neitz R.
        Pain, negative mood, and perceived support in chronic pain patients: A daily diary study of people with reflex sympathetic dystrophy syndrome.
        J Consult Clin Psychol. 1999; 67: 776-785
        • Giesecke T.
        • Williams D.A.
        • Harris R.E.
        • Cupps T.R.
        • Tian X.
        • Tian T.X.
        • Gracely R.H.
        • Clauw D.J.
        Subgrouping of fibromyalgia patients on the basis of pressure-pain thresholds and psychological factors.
        Arthritis Rheum. 2003; 48: 2916-2922
        • Graff L.A.
        • Clara I.
        • Walker J.R.
        • Lix L.
        • Carr R.
        • Miller N.
        • Rogala L.
        • Bernstein C.N.
        Changes in fatigue over 2 years are associated with activity of inflammatory bowel disease and psychological factors.
        Clin Gastroenterol Hepatol. 2013; 11: 1140-1146
        • Harris R.E.
        • Williams D.A.
        • McLean S.A.
        • Sen A.
        • Hufford M.
        • Gendreau R.M.
        • Gracely R.H.
        • Clauw D.J.
        Characterization and consequences of pain variability in individuals with fibromyalgia.
        Arthritis Rheum. 2005; 52: 3670-3674
        • Heck R.H.
        • Thomas S.L.
        • Tabata L.N.
        Multilevel and Longitudinal Modeling with IBM SPSS.
        Routledge, Taylor & Francis Group, New York2014
        • Hegarty R.S.
        • Treharne G.J.
        • Stebbings S.
        • Conner T.S.
        Fatigue and mood among people with arthritis: Carry-over across the day.
        Health Psychol. 2016; 35: 492-499
        • Hox J.J.
        Multilevel Analysis.
        Lawrence Erlbaum Associates, Mahwah, NJ2002
        • Hurtig I.M.
        • Raak R.I.
        • Kendall S.A.
        • Gerdle B.
        • Wahren L.K.
        Quantitative sensory testing in fibromyalgia patients and in healthy subjects: Identification of subgroups.
        Clin J Pain. 2001; 17: 316-322
        • Hutchings A.
        • Calloway M.
        • Choy E.
        • Hooper M.
        • Hunter D.J.
        • Jordan J.M.
        • Zhang Y.
        • Baser O.
        • Long S.
        • Palmer L.
        The Longitudinal Examination of Arthritis Pain (LEAP) study: Relationships between weekly fluctuations in patient-rated joint pain and other health outcomes.
        J Rheumatol. 2007; 34: 2291-2300
        • Jamison R.N.
        • Brown G.K.
        Validation of hourly pain intensity profiles with chronic pain patients.
        Pain. 1991; 45: 123-128
        • Jenkinson C.
        • Wright L.
        • Coulter A.
        Criterion validity and reliability of the SF-36 in a population sample.
        Qual Life Res. 1994; 3: 7-12
        • Kratz A.L.
        • Murphy S.L.
        • Braley T.J.
        Ecological momentary assessment of pain, fatigue, depressive, and cognitive symptoms reveals significant daily variability in multiple sclerosis.
        Arch Phys Med Rehabil. 2017;
        • Loevinger B.L.
        • Shirtcliff E.A.
        • Muller D.
        • Alonso C.
        • Coe C.L.
        Delineating psychological and biomedical profiles in a heterogeneous fibromyalgia population using cluster analysis.
        Clin Rheumatol. 2012; 31: 677-685
        • Lukkahatai N.
        • Walitt B.
        • Espina A.
        • Gelio A.
        • Saligan L.N.
        Understanding the association of fatigue with other symptoms of fibromyalgia: Development of a cluster model.
        Arthritis Care Res (Hoboken). 2016; 68: 99-107
        • Martinez J.E.
        • Domingues C.
        • Davolos F.J.
        • Martinez L.C.
        • Gozzano J.O.
        Fibromyalgia patients' quality of life and pain intensity variation.
        Rev Bras Reumatol. 2008; 48: 325-328
        • Milligan G.W.
        • Cooper M.C.
        An examination of procedures for determining the number of clusters in a data set.
        Psychometrika. 1985; 50: 159-179
        • Ong A.D.
        • Zautra A.J.
        • Reid M.C.
        Psychological resilience predicts decreases in pain catastrophizing through positive emotions.
        Psychol Aging. 2010; 25: 516-523
        • Pennebaker J.W.
        The Psychology of Physical Symptoms.
        Springer, New York1982
        • Peters M.L.
        • Sorbi M.J.
        • Kruise D.A.
        • Kerssens J.J.
        • Verhaak P.F.
        • Bensing J.M.
        Electronic diary assessment of pain, disability and psychological adaptation in patients differing in duration of pain.
        Pain. 2000; 84: 181-192
        • Plazier M.
        • Ost J.
        • Stassijns G.
        • De Ridder D.
        • Vanneste S.
        Pain characteristics in fibromyalgia: Understanding the multiple dimensions of pain.
        Clin Rheumatol. 2015; 34: 775-783
        • Pollard L.
        • Choy E.
        • Gonzalez J.
        • Khoshaba B.
        • Scott D.
        Fatigue in rheumatoid arthritis reflects pain, not disease activity.
        Rheumatology. 2006; 45: 885-889
        • Randolph J.J.
        • Arnett P.A.
        Depression and fatigue in relapsing-remitting MS: The role of symptomatic variability.
        Mult Scler. 2005; 11: 186-190
        • Rehm S.E.
        • Koroschetz J.
        • Gockel U.
        • Brosz M.
        • Freynhagen R.
        • Tolle T.R.
        • Baron R.
        A cross-sectional survey of 3035 patients with fibromyalgia: Subgroups of patients with typical comorbidities and sensory symptom profiles.
        Rheumatology. 2010; 49: 1146-1152
        • Schneider S.
        • Junghaenel D.U.
        • Keefe F.J.
        • Schwartz J.E.
        • Stone A.A.
        • Broderick J.E.
        Individual differences in the day-to-day variability of pain, fatigue, and well-being in patients with rheumatic disease: Associations with psychological variables.
        Pain. 2012; 153: 813-822
        • Singer J.D.
        • Willett J.B.
        Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence.
        Oxford University Press, Oxford; New York2003
        • Stone A.A.
        • Broderick J.E.
        • Porter L.S.
        • Kaell A.T.
        The experience of rheumatoid arthritis pain and fatigue: Examining momentary reports and correlates over one week.
        Arthritis Care Res. 1997; 10: 185-193
        • Sturgeon J.A.
        • Zautra A.J.
        Resilience: A new paradigm for adaptation to chronic pain.
        Curr Pain Headache Rep. 2010; 14: 105-112
        • Tupper S.M.
        • Rosenberg A.M.
        • Pahwa P.
        • Stinson J.N.
        Pain intensity variability and its relationship with quality of life in youths with juvenile idiopathic arthritis.
        Arthritis Care Res. 2013; 65: 563-570
        • Turk D.C.
        • Okifuji A.
        • Sinclair J.D.
        • Starz T.W.
        Differential responses by psychosocial subgroups of fibromyalgia syndrome patients to an interdisciplinary treatment.
        Arthritis Care Res. 1998; 11: 397-404
        • Vangronsveld K.L.
        • Peters M.
        • Goossens M.
        • Vlaeyen J.
        The influence of fear of movement and pain catastrophizing on daily pain and disability in individuals with acute whiplash injury: A daily diary study.
        Pain. 2008; 139: 449-457
        • Verra M.L.
        • Angst F.
        • Brioschi R.
        • Lehmann S.
        • Keefe F.J.
        • Staal J.B.
        • de Bie R.A.
        • Aeschlimann A.
        Does classification of persons with fibromyalgia into Multidimensional Pain Inventory subgroups detect differences in outcome after a standard chronic pain management program?.
        Pain Res Manag. 2009; 14: 445-453
        • Vincent A.
        • Hoskin T.L.
        • Whipple M.O.
        • Clauw D.J.
        • Barton D.L.
        • Benzo R.P.
        • Williams D.A.
        OMERACT-based fibromyalgia symptom subgroups: An exploratory cluster analysis.
        Arthritis Res Ther. 2014; 16: 463
        • Walitt B.
        • Fitzcharles M.A.
        • Hassett A.L.
        • Katz R.S.
        • Hauser W.
        • Wolfe F.
        The longitudinal outcome of fibromyalgia: A study of 1555 patients.
        J Rheumatol. 2011; 38: 2238-2246
        • Ware Jr, J.E.
        • Sherbourne C.D.
        The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection.
        Med Care. 1992; 30: 473-483
        • Wilson H.D.
        • Robinson J.P.
        • Turk D.C.
        Toward the identification of symptom patterns in people with fibromyalgia.
        Arthritis Rheum. 2009; 61: 527-534
        • Wolfe F.
        • Smythe H.A.
        • Yunus M.B.
        • Bennett R.M.
        • Bombardier C.
        • Goldenberg D.L.
        • Tugwell P.
        • Campbell S.M.
        • Abeles M.
        • Clark P.
        • Fam A.G.
        • Farber S.J.
        • Fiechtner J.J.
        • Franklin C.M.
        • Gatter R.A.
        • Hamaty D.
        • Lessard J.
        • Lichtbroun A.S.
        • Masi A.T.
        • McCain G.A.
        • Reynolds W.J.
        • Romano T.J.
        • Russell I.J.
        • Sheon R.P.
        The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee.
        Arthritis Rheum. 1990; 33: 160-172
        • Zakoscielna K.M.
        • Parmelee P.A.
        Pain variability and its predictors in older adults: Depression, cognition, functional status, health, and pain.
        J Aging Health. 2013; 25: 1329-1339
        • Zautra A.J.
        • Fasman R.
        • Parish B.P.
        • Davis M.C.
        Daily fatigue in women with osteoarthritis, rheumatoid arthritis, and fibromyalgia.
        Pain. 2007; 128: 128-135
        • Zautra A.J.
        • Sturgeon J.A.
        Examining the complexities of affective experience will enhance our understanding of pain and inform new interventions designed to bolster resilience.
        Pain. 2016; 157: 1586-1587