Oxytocin Effects on Pain Perception and Pain Anticipation


      • Oxytocin (OT) modulates pain processing in the ventral striatum.
      • OT counteracts sensitization to repeated pain stimuli via the anterior insula.
      • OT acts on pain anticipation in the posterior insula, boostering associative learning.
      • OT enhances the conditioned fear of pain response mediated in the ventral striatum.


      There is an ongoing debate whether the neuropeptide oxytocin (OT) modulates pain processing in humans. This study differentiates behavioral and neuronal OT effects on pain perception and pain anticipation by using a Pavlovian conditioning paradigm. Forty-six males received intranasally administered OT in a randomized, double-blind, placebo-controlled group design. Although OT exerted no direct effect on perceived pain, OT was found to modulate the blood oxygen level-dependent response in the ventral striatum for painful versus warm unconditioned stimuli and to decrease activity in the anterior insula (IS) with repeated thermal pain stimuli. Regarding pain anticipation, OT increased responses to CSpain versus CSminus in the nucleus accumbens. Furthermore, in the OT condition increased correct expectations, particularly for the most certain conditioned stimuli (CS)–unconditioned stimuli associations (CSminus and CSpain) were found, as well as greatest deactivations in the right posterior IS in response to the least certain condition (CSwarm) with posterior IS activity and correct expectancies being positively correlated. In conclusion, OT seems to have both a direct effect on pain processing via the ventral striatum and by inducing habituation in the anterior IS as well as on pain anticipation by boostering associative learning in general and the neuronal conditioned fear of pain response in particular.


      The neuropeptide OT has recently raised the hope to offer a novel avenue for modulating pain experience. This study found OT to modulate pain processing and to facilitate the anticipation of pain, inspiring further research on OT effects on the affective dimension of the pain experience.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Althammer F
        • Grinevich V
        Diversity of oxytocin neurons: Beyond magno- and parvocellular cell types?.
        J Neuroendocrinol. 2017; (Oct 12 [Epub ahead of print])
        • Benedek M
        • Kaernbach C
        A continuous measure of phasic electrodermal activity.
        J Neurosci Methods. 2010; 190: 80-91
        • Benson S
        • Kattoor J
        • Kullmann JS
        • Hofmann S
        • Engler H
        • Forsting M
        • Gizewski ER
        • Elsenbruch S
        Towards understanding sex differences in visceral pain: Enhanced reactivation of classically-conditioned fear in healthy women.
        Neurobiol Learn Mem. 2014; 109: 113-121
        • Boll S
        • Almeida de Minas AC
        • Raftogianni A
        • Herpertz SC
        • Grinevich V
        Oxytocin and pain perception: From animal models to human research.
        Neuroscience. 2017; 387: 149-161
      1. Borsook D, Upadhyay J, Chudler EH, Becerra LJMp: A key role of the basal ganglia in pain and analgesia-insights gained through human functional imaging. Mol Pain 6:27, 2010

        • Cavalli J
        • Ruttorf M
        • Pahi MR
        • Zidda F
        • Flor H
        • Nees F
        Oxytocin differentially modulates Pavlovian cue and context fear acquisition.
        Soc Cogn Affect Neurosci. 2017; 12: 976-983
        • Chini B
        • Verhage M
        • Grinevich V
        The action radius of oxytocin release in the mammalian CNS: From single vesicles to behavior.
        Trends Pharmacol Sci. 2017; 38: 982-991
        • Delgado MR
        • Jou RL
        • Phelps EA
        Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers.
        Front Neurosci. 2011; 5: 71
        • Duerden EG
        • Albanese MC
        Localization of pain-related brain activation: A meta-analysis of neuroimaging data.
        Hum Brain Map. 2013; 34: 109-149
        • Eckstein M
        • Scheele D
        • Patin A
        • Preckel K
        • Becker B
        • Walter A
        • Domschke K
        • Grinevich V
        • Maier W
        • Hurlemann R
        Oxytocin facilitates Pavlovian fear learning in males.
        Neuropsychopharmacology. 2016; 41: 932-939
        • Frot M
        • Faillenot I
        • Mauguiere F
        Processing of nociceptive input from posterior to anterior insula in humans.
        Hum Brain Map. 2014; 35: 5486-5499
        • Geuter S
        • Boll S
        • Eippert F
        • Buchel C
        Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula.
        eLife. 2017; 6
        • Grinevich V
        • Stoop R
        Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors.
        Neuron. 2018; 99: 887-904
        • Gu XL
        • Yu LC
        Involvement of opioid receptors in oxytocin-induced antinociception in the nucleus accumbens of rats.
        J Pain. 2007; 8: 85-90
        • Guastella AJ
        • Hickie IB
        • McGuinness MM
        • Otis M
        • Woods EA
        • Disinger HM
        • Chan HK
        • Chen TF
        • Banati RB:
        Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research.
        Psychoneuroendocrinology. 2013; 38: 612-625
        • Haaker J
        • Gaburro S
        • Sah A
        • Gartmann N
        • Lonsdorf TB
        • Meier K
        • Singewald N
        • Pape HC
        • Morellini F
        • Kalisch R
        Single dose of L-dopa makes extinction memories context-independent and prevents the return of fear.
        Proc Natl Acad Sci U S A. 2013; 110: E2428-E2436
        • Iannetti GD
        • Zambreanu L
        • Wise RG
        • Buchanan TJ
        • Huggins JP
        • Smart TS
        • Vennart W
        • Tracey I
        Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans.
        Proc Natl Acad Sci U S A. 2005; 102: 18195-18200
        • Kessner S
        • Sprenger C
        • Wrobel N
        • Wiech K
        • Bingel U
        Effect of oxytocin on placebo analgesia: A randomized study.
        JAMA. 2013; 310: 1733-1735
        • Koenen LR
        • Icenhour A
        • Forkmann K
        • Theysohn N
        • Forsting M
        • Bingel U
        • Elsenbruch S
        From anticipation to the experience of pain: The importance of visceral versus somatic pain modality in neural and behavioral responses to pain-predictive cues.
        Psychosom Med. 2018; 80: 826-835
        • Kong J
        • Loggia ML
        • Zyloney C
        • Tu P
        • Laviolette P
        • Gollub RL
        Exploring the brain in pain: Activations, deactivations and their relation.
        Pain. 2010; 148: 257-267
        • Labrenz F
        • Icenhour A
        • Schlamann M
        • Forsting M
        • Bingel U
        • Elsenbruch S
        From Pavlov to pain: How predictability affects the anticipation and processing of visceral pain in a fear conditioning paradigm.
        NeuroImage. 2016; 130: 104-114
        • Lanz S
        • Seifert F
        • Maihofner C
        Brain activity associated with pain, hyperalgesia and allodynia: An ALE meta-analysis.
        J Neural Transm. 2011; 118: 1139-1154
        • Lu C
        • Yang T
        • Zhao H
        • Zhang M
        • Meng F
        • Fu H
        • Xie Y
        • Xu H
        Insular cortex is critical for the perception, modulation, and chronification of pain.
        Neurosci Bull. 2016; 32: 191-201
        • Marschner A
        • Kalisch R
        • Vervliet B
        • Vansteenwegen D
        • Buchel C
        Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning.
        J Neurosci. 2008; 28: 9030-9036
        • Mulej Bratec S
        • Xie X
        • Wang Y
        • Schilbach L
        • Zimmer C
        • Wohlschlager AM
        • Riedl V
        • Sorg C
        Cognitive emotion regulation modulates the balance of competing influences on ventral striatal aversive prediction error signals.
        NeuroImage. 2017; 147: 650-657
        • Nieuwenhuys R
        The insular cortex: A review.
        Prog Brain Res. 2012; 195: 123-163
        • Palermo S
        • Benedetti F
        • Costa T
        • Amanzio M
        Pain anticipation: An activation likelihood estimation meta-analysis of brain imaging studies.
        Hum Brain Map. 2015; 36: 1648-1661
        • Pan YJ
        • Wang DX
        • Yang J
        • He XL
        • Xiao NM
        • Ma RQ
        • Wang CH
        • Lin BC
        Oxytocin in hypothalamic supraoptic nucleus is transferred to the caudate nucleus to influence pain modulation.
        Neuropeptides. 2016; 58: 61-65
        • Rash JA
        • Campbell TS
        The effect of intranasal oxytocin administration on acute cold pressor pain: A placebo-controlled, double-blind, within-participants crossover investigation.
        Psychosom Med. 2014; 76: 422-429
        • Rolke R
        • Magerl W
        • Campbell KA
        • Schalber C
        • Caspari S
        • Birklein F
        • Treede RD
        Quantitative sensory testing: A comprehensive protocol for clinical trials.
        Eur J Pain. 2006; 10: 77-88
        • Schoell ED
        • Bingel U
        • Eippert F
        • Yacubian J
        • Christiansen K
        • Andresen H
        • May A
        • Buechel C
        The effect of opioid receptor blockade on the neural processing of thermal stimuli.
        PloS One. 2010; 5: e12344
        • Sehlmeyer C
        • Schoning S
        • Zwitserlood P
        • Pfleiderer B
        • Kircher T
        • Arolt V
        • Konrad C
        Human fear conditioning and extinction in neuroimaging: A systematic review.
        PloS One. 2009; 4: e5865
        • Seidel EM
        • Pfabigan DM
        • Hahn A
        • Sladky R
        • Grahl A
        • Paul K
        • Kraus C
        • Kublbock M
        • Kranz GS
        • Hummer A
        • Lanzenberger R
        • Windischberger C
        • Lamm C
        Uncertainty during pain anticipation: The adaptive value of preparatory processes.
        Hum Brain Map. 2015; 36: 744-755
        • Singer T
        • Snozzi R
        • Bird G
        • Petrovic P
        • Silani G
        • Heinrichs M
        • Dolan RJ
        Effects of oxytocin and prosocial behavior on brain responses to direct and vicariously experienced pain.
        Emotion. 2008; 8: 781-791
        • Smith JK
        • Marciani L
        • Humes DJ
        • Francis ST
        • Gowland P
        • Spiller RC
        Anticipation of thermal pain in diverticular disease.
        Neurogastroenterol Motil. 2016; 28: 900-913
        • Spengler FB
        • Schultz J
        • Scheele D
        • Essel M
        • Maier W
        • Heinrichs M
        • Hurlemann R
        Kinetics and Dose Dependency of Intranasal Oxytocin Effects on Amygdala Reactivity.
        Biological psychiatry. 2017; 82: 885-894
        • Tracy LM
        • Georgiou-Karistianis N
        • Gibson SJ
        • Giummarra MJ
        Oxytocin and the modulation of pain experience: Implications for chronic pain management.
        Neurosci Biobehav Rev. 2015; 55: 53-67
        • Tracy LM
        • Labuschagne I
        • Georgiou-Karistianis N
        • Gibson SJ
        • Giummarra MJ
        Sex-specific effects of intranasal oxytocin on thermal pain perception: A randomised, double-blind, placebo-controlled cross-over study.
        Psychoneuroendocrinology. 2017; 83: 101-110
        • Wager TD
        • Atlas LY
        • Lindquist MA
        • Roy M
        • Woo CW
        • Kross E
        An fMRI-based neurologic signature of physical pain.
        N Engl J Med. 2013; 368: 1388-1397
        • Wiech K
        • Jbabdi S
        • Lin CS
        • Andersson J
        • Tracey I
        Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.
        Pain. 2014; 155: 2047-2055
        • Wiech K
        • Lin CS
        • Brodersen KH
        • Bingel U
        • Ploner M
        • Tracey I
        Anterior insula integrates information about salience into perceptual decisions about pain.
        J Neurosci. 2010; 30: 16324-16331
        • Xin Q
        • Bai B
        • Liu W
        The analgesic effects of oxytocin in the peripheral and central nervous system.
        Neurochem Int. 2017; 103: 57-64
        • Xue G
        • Lu Z
        • Levin IP
        • Bechara A
        The impact of prior risk experiences on subsequent risky decision-making: The role of the insula.
        NeuroImage. 2010; 50: 709-716
        • Yang J
        • Pan YJ
        • Zhao Y
        • Qiu PY
        • Lu L
        • Li P
        • Chen F
        • Yan XQ
        • Wang DX
        Oxytocin in the rat caudate nucleus influences pain modulation.
        Peptides. 2011; 32: 2104-2107
        • Zunhammer M
        • Geis S
        • Busch V
        • Eichhammer P
        • Greenlee MW
        Pain modulation by intranasal oxytocin and emotional picture viewing—A randomized double-blind fMRI study.
        Sci Rep. 2016; 6: 31606
        • Zunhammer M
        • Geis S
        • Busch V
        • Greenlee MW
        • Eichhammer P
        Effects of intranasal oxytocin on thermal pain in healthy men: A randomized functional magnetic resonance imaging study.
        Psychosom Med. 2015; 77: 156-166