Advertisement

A Role for Protease Activated Receptor Type 3 (PAR3) in Nociception Demonstrated Through Development of a Novel Peptide Agonist

Published:January 08, 2021DOI:https://doi.org/10.1016/j.jpain.2020.12.006

      Highlights

      • PAR3 is broadly distributed in mouse DRGs and is co-expressed with other PARs.
      • Novel peptidomimetic compound 660 selectively activates PAR3.
      • Knocking out PAR3 potentiates the pronociceptive effects of PAR1 agonists.
      • PAR3 plays a crucial role in hyperalgesic priming.

      Abstract

      The protease activated receptor (PAR) family is a group of G-protein coupled receptors (GPCRs) activated by proteolytic cleavage of the extracellular domain. PARs are expressed in a variety of cell types with crucial roles in homeostasis, immune responses, inflammation, and pain. PAR3 is the least researched of the four PARs, with little known about its expression and function. We sought to better understand its potential function in the peripheral sensory nervous system. Mouse single-cell RNA sequencing data demonstrates that PAR3 is widely expressed in dorsal root ganglion (DRG) neurons. Co-expression of PAR3 mRNA with other PARs was identified in various DRG neuron subpopulations, consistent with its proposed role as a coreceptor of other PARs. We developed a lipid tethered PAR3 agonist, C660, that selectively activates PAR3 by eliciting a Ca2+ response in DRG and trigeminal neurons. In vivo, C660 induces mechanical hypersensitivity and facial grimacing in WT but not PAR3−/− mice. We characterized other nociceptive phenotypes in PAR3−/− mice and found a loss of hyperalgesic priming in response to IL-6, carrageenan, and a PAR2 agonist, suggesting that PAR3 contributes to long-lasting nociceptor plasticity in some contexts. To examine the potential role of PAR3 in regulating the activity of other PARs in sensory neurons, we administered PAR1, PAR2, and PAR4 agonists and assessed mechanical and affective pain behaviors in WT and PAR3−/− mice. We observed that the nociceptive effects of PAR1 agonists were potentiated in the absence of PAR3. Our findings suggest a complex role of PAR3 in the physiology and plasticity of nociceptors.

      Perspective

      We evaluated the role of PAR3, a G-protein coupled receptor, in nociception by developing a selective peptide agonist. Our findings suggest that PAR3 contributes to nociception in various contexts and plays a role in modulating the activity of other PARs.

      Graphical abstract

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alexander SPH
        • Christopoulos A
        • Davenport AP
        • Kelly E
        • Mathie A
        • Peters JA
        • Veale EL
        • Armstrong JF
        • Faccenda E
        • Harding SD
        • Pawson AJ
        • Sharman JL
        • Southan C
        • Davies JA
        Collaborators C: The concise guide to pharmacology 2019/20: G protein-coupled receptors.
        Br J Pharmacol. 2019; 176: S21-S141
        • Aley KO
        • Messing RO
        • Mochly-Rosen D
        • Levine JD
        Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C.
        J Neurosci. 2000; 20: 4680-4685
        • Arachiche A
        • de la Fuente M
        • Nieman MT
        Calcium mobilization and protein kinase C activation downstream of protease activated receptor 4 (PAR4) is negatively regulated by PAR3 in mouse platelets.
        PLoS One. 2013; 8: e55740
        • Boitano S
        • Flynn AN
        • Schulz SM
        • Hoffman J
        • Price TJ
        • Vagner J
        Potent agonists of the protease activated receptor 2 (PAR2).
        J Med Chem. 2011; 54: 1308-1313
        • Bradesi S
        PAR4: A new role in the modulation of visceral nociception.
        Neurogastroenterol Motil. 2009; 21: 1129-1132
        • Bretschneider E
        • Spanbroek R
        • Lotzer K
        • Habenicht AJ
        • Schror K
        Evidence for functionally active protease-activated receptor-3 (PAR-3) in human vascular smooth muscle cells.
        Thromb Haemost. 2003; 90: 704-709
        • Bunnett NW
        Protease-activated receptors: How proteases signal to cells to cause inflammation and pain.
        Semin Thromb Hemost. 2006; 32: 39-48
        • Butler A
        • Hoffman P
        • Smibert P
        • Papalexi E
        • Satija R
        Integrating single-cell transcriptomic data across different conditions, technologies, and species.
        Nat Biotechnol. 2018; 36: 411-420
        • Chamessian A
        • Young M
        • Qadri Y
        • Berta T
        • Ji RR
        • Van de Ven T
        Transcriptional profiling of somatostatin interneurons in the spinal dorsal horn.
        Sci Rep. 2018; 8: 6809
        • Chaplan SR
        • Bach FW
        • Pogrel JW
        • Chung JM
        • Yaksh TL
        Quantitative assessment of tactile allodynia in the rat paw.
        J Neurosci Methods. 1994; 53: 55-63
        • Cocks TM
        • Moffatt JD
        Protease-activated receptors: sentries for inflammation?.
        Trends Pharmacol Sci. 2000; 21: 103-108
        • Colognato R
        • Slupsky JR
        • Jendrach M
        • Burysek L
        • Syrovets T
        • Simmet T
        Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells.
        Blood. 2003; 102: 2645-2652
        • Coughlin SR
        Thrombin signalling and protease-activated receptors.
        Nature. 2000; 407: 258-264
        • Cupit LD
        • Schmidt VA
        • Bahou WF
        Proteolytically activated receptor-3. A member of an emerging gene family of protease receptors expressed on vascular endothelial cells and platelets.
        Trends Cardiovasc Med. 1999; 9: 42-48
        • Dixon WJ
        Efficient analysis of experimental observations.
        Annu Rev Pharmacol Toxicol. 1980; 20: 441-462
        • Flynn AN
        • Tillu DV
        • Asiedu MN
        • Hoffman J
        • Vagner J
        • Price TJ
        • Boitano S
        The protease-activated receptor-2-specific agonists 2-aminothiazol-4-yl-LIGRL-NH2 and 6-aminonicotinyl-LIGRL-NH2 stimulate multiple signaling pathways to induce physiological responses in vitro and in vivo.
        J Biol Chem. 2011; 286: 19076-19088
        • Flynn AN
        • Hoffman J
        • Tillu DV
        • Sherwood CL
        • Zhang Z
        • Patek R
        • Asiedu MN
        • Vagner J
        • Price TJ
        • Boitano S
        Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering.
        FASEB J. 2013; 27: 1498-1510
        • Gribov A
        • Sill M
        • Luck S
        • Rucker F
        • Dohner K
        • Bullinger L
        • Benner A
        • Unwin A
        SEURAT: Visual analytics for the integrated analysis of microarray data.
        BMC Med Genomics. 2010; 3: 21
        • Hamilton JR
        • Trejo J
        Challenges and opportunities in protease-activated receptor drug development.
        Annu Rev Pharmacol Toxicol. 2017; 57: 349-373
        • Han L
        • Ma C
        • Liu Q
        • Weng HJ
        • Cui Y
        • Tang Z
        • Kim Y
        • Nie H
        • Qu L
        • Patel KN
        • Li Z
        • McNeil B
        • He S
        • Guan Y
        • Xiao B
        • Lamotte RH
        • Dong X
        A subpopulation of nociceptors specifically linked to itch.
        Nat Neurosci. 2013; 16: 174-182
        • Han X
        • Hofmann L
        • de la Fuente M
        • Alexander N
        • Palczewski K
        • Consortium I
        • Nieman MT
        PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153.
        Blood. 2020; 136: 2217-2228
        • Hansen KK
        • Saifeddine M
        • Hollenberg MD
        Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells.
        Immunology. 2004; 112: 183-190
        • Hargreaves K
        • Dubner R
        • Brown F
        • Flores C
        • Joris J
        A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia.
        Pain. 1988; 32: 77-88
        • Hassler SN
        • Ahmad FB
        • Burgos-Vega CC
        • Boitano S
        • Vagner J
        • Price TJ
        • Dussor G
        Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice.
        Cephalalgia. 2019; 39: 111-122
        • Hassler SN
        • Kume M
        • Mwirigi J
        • Ahmad A
        • Shiers S
        • Wangzhou A
        • Ray P
        • Belugin SN
        • Naik DK
        • Burton MD
        • Vagner J
        • Boitano S
        • Akopian AN
        • Dussor G
        • Price TJ
        The cellular basis of protease activated receptor type 2 (PAR2) evoked mechanical and affective pain.
        JCI Insight. 2020;
        • Heuberger DM
        • Schuepbach RA
        Protease-activated receptors (PARs): Mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases.
        Thromb J. 2019; 17: 4
        • Hockley JRF
        • Taylor TS
        • Callejo G
        • Wilbrey AL
        • Gutteridge A
        • Bach K
        • Winchester WJ
        • Bulmer DC
        • McMurray G
        • Smith ESJ
        Single-cell RNAseq reveals seven classes of colonic sensory neuron.
        Gut. 2019; 68: 633-644
        • Hollenberg MD
        • Mihara K
        • Polley D
        • Suen JY
        • Han A
        • Fairlie DP
        • Ramachandran R
        Biased signalling and proteinase-activated receptors (PARs): Targeting inflammatory disease.
        Br J Pharmacol. 2014; 171: 1180-1194
        • Hucho T
        • Levine JD
        Signaling pathways in sensitization: Toward a nociceptor cell biology.
        Neuron. 2007; 55: 365-376
        • Ishihara H
        • Connolly AJ
        • Zeng D
        • Kahn ML
        • Zheng YW
        • Timmons C
        • Tram T
        • Coughlin SR
        Protease-activated receptor 3 is a second thrombin receptor in humans.
        Nature. 1997; 386: 502-506
        • Ishihara H
        • Zeng D
        • Connolly AJ
        • Tam C
        • Coughlin SR
        Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin.
        Blood. 1998; 91: 4152-4157
        • Jimenez-Vargas NN
        • Pattison LA
        • Zhao P
        • Lieu T
        • Latorre R
        • Jensen DD
        • Castro J
        • Aurelio L
        • Le GT
        • Flynn B
        • Herenbrink CK
        • Yeatman HR
        • Edgington-Mitchell L
        • Porter CJH
        • Halls ML
        • Canals M
        • Veldhuis NA
        • Poole DP
        • McLean P
        • Hicks GA
        • Scheff N
        • Chen E
        • Bhattacharya A
        • Schmidt BL
        • Brierley SM
        • Vanner SJ
        • Bunnett NW
        Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome.
        Proc Natl Acad Sci U S A. 2018; 115: E7438-E7E47
        • Kalashnyk O
        • Petrova Y
        • Lykhmus O
        • Mikhalovska L
        • Mikhalovsky S
        • Zhukova A
        • Gnatenko D
        • Bahou W
        • Komisarenko S
        • Skok M
        Expression, function and cooperating partners of protease-activated receptor type 3 in vascular endothelial cells and B lymphocytes studied with specific monoclonal antibody.
        Mol Immunol. 2013; 54: 319-326
        • Kandasamy R
        • Price TJ
        The pharmacology of nociceptor priming.
        Handb Exp Pharmacol. 2015; 227: 15-37
        • Kaufmann R
        • Schulze B
        • Krause G
        • Mayr LM
        • Settmacher U
        • Henklein P
        Proteinase-activated receptors (PARs)–the PAR3 Neo-N-terminal peptide TFRGAP interacts with PAR1.
        Regul Pept. 2005; 125: 61-66
        • Kouzoukas DE
        • Ma F
        • Meyer-Siegler KL
        • Westlund KN
        • Hunt DE
        • Vera PL
        Protease-activated receptor 4 induces bladder pain through high mobility group Box-1.
        PLoS One. 2016; 11e0152055
        • Lachmann A
        • Torre D
        • Keenan AB
        • Jagodnik KM
        • Lee HJ
        • Wang L
        • Silverstein MC
        • Ma'ayan A
        Massive mining of publicly available RNA-seq data from human and mouse.
        Nat Commun. 2018; 9: 1366
        • Lam DK
        • Schmidt BL
        Serine proteases and protease-activated receptor 2-dependent allodynia: A novel cancer pain pathway.
        Pain. 2010; 149: 263-272
        • Langford DJ
        • Bailey AL
        • Chanda ML
        • Clarke SE
        • Drummond TE
        • Echols S
        • Glick S
        • Ingrao J
        • Klassen-Ross T
        • Lacroix-Fralish ML
        • Matsumiya L
        • Sorge RE
        • Sotocinal SG
        • Tabaka JM
        • Wong D
        • van den Maagdenberg AM
        • Ferrari MD
        • Craig KD
        • Mogil JS
        Coding of facial expressions of pain in the laboratory mouse.
        Nat Methods. 2010; 7: 447-449
        • Li CL
        • Li KC
        • Wu D
        • Chen Y
        • Luo H
        • Zhao JR
        • Wang SS
        • Sun MM
        • Lu YJ
        • Zhong YQ
        • Hu XY
        • Hou R
        • Zhou BB
        • Bao L
        • Xiao HS
        • Zhang X
        Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity.
        Cell Res. 2016; 26: 83-102
        • Macfarlane SR
        • Seatter MJ
        • Kanke T
        • Hunter GD
        • Plevin R
        Proteinase-activated receptors.
        Pharmacol Rev. 2001; 53: 245-282
        • McLaughlin JN
        • Patterson MM
        • Malik AB
        Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization.
        Proc Natl Acad Sci U S A. 2007; 104: 5662-5667
        • Meixiong J
        • Dong X
        Mas-related G protein-coupled receptors and the biology of itch sensation.
        Annu Rev Genet. 2017; 51: 103-121
        • Mishra SK
        • Hoon MA
        The cells and circuitry for itch responses in mice.
        Science. 2013; 340: 968-971
        • Moehring F
        • Halder P
        • Seal RP
        • Stucky CL
        Uncovering the cells and circuits of touch in normal and pathological settings.
        Neuron. 2018; 100: 349-360
        • Moy JK
        • Khoutorsky A
        • Asiedu MN
        • Black BJ
        • Kuhn JL
        • Barragan-Iglesias P
        • Megat S
        • Burton MD
        • Burgos-Vega CC
        • Melemedjian OK
        • Boitano S
        • Vagner J
        • Gkogkas CG
        • Pancrazio JJ
        • Mogil JS
        • Dussor G
        • Sonenberg N
        • Price TJ
        The MNK-eIF4E signaling axis contributes to injury-induced nociceptive plasticity and the development of chronic pain.
        J Neurosci. 2017; 37: 7481-7499
        • Nakanishi-Matsui M
        • Zheng YW
        • Sulciner DJ
        • Weiss EJ
        • Ludeman MJ
        • Coughlin SR
        PAR3 is a cofactor for PAR4 activation by thrombin.
        Nature. 2000; 404: 609-613
        • Ostrowska E
        • Reiser G
        The protease-activated receptor-3 (PAR-3) can signal autonomously to induce interleukin-8 release.
        Cell Mol Life Sci. 2008; 65: 970-981
        • Parada CA
        • Reichling DB
        • Levine JD
        Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCepsilon second messenger pathways.
        Pain. 2005; 113: 185-190
        • Price TJ
        • Inyang KE
        Commonalities between pain and memory mechanisms and their meaning for understanding chronic pain.
        Prog Mol Biol Transl Sci. 2015; 131: 409-434
        • Ramachandran R
        • Hollenberg MD
        Proteinases and signalling: Pathophysiological and therapeutic implications via PARs and more.
        Br J Pharmacol. 2008; 153: S263-S282
        • Reichling DB
        • Levine JD
        Critical role of nociceptor plasticity in chronic pain.
        Trends Neurosci. 2009; 32: 611-618
        • Rosenkranz AC
        • Rauch BH
        • Doller A
        • Eberhardt W
        • Bohm A
        • Bretschneider E
        • Schror K
        Regulation of human vascular protease-activated receptor-3 through mRNA stabilization and the transcription factor nuclear factor of activated T cells (NFAT).
        Mol Pharmacol. 2011; 80: 337-344
        • Russell FA
        • McDougall JJ
        Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation.
        Inflamm Res. 2009; 58: 119-126
        • Schmidt VA
        • Nierman WC
        • Maglott DR
        • Cupit LD
        • Moskowitz KA
        • Wainer JA
        • Bahou WF
        The human proteinase-activated receptor-3 (PAR-3) gene. Identification within a Par gene cluster and characterization in vascular endothelial cells and platelets.
        J Biol Chem. 1998; 273: 15061-15068
        • Steinhoff M
        • Buddenkotte J
        • Shpacovitch V
        • Rattenholl A
        • Moormann C
        • Vergnolle N
        • Luger TA
        • Hollenberg MD
        Proteinase-activated receptors: Transducers of proteinase-mediated signaling in inflammation and immune response.
        Endocr Rev. 2005; 26: 1-43
        • Tillu DV
        • Hassler SN
        • Burgos-Vega CC
        • Quinn TL
        • Sorge RE
        • Dussor G
        • Boitano S
        • Vagner J
        • Price TJ
        Protease-activated receptor 2 activation is sufficient to induce the transition to a chronic pain state.
        Pain. 2015; 156: 859-867
        • Vergnolle N
        • Bunnett NW
        • Sharkey KA
        • Brussee V
        • Compton SJ
        • Grady EF
        • Cirino G
        • Gerard N
        • Basbaum AI
        • Andrade-Gordon P
        • Hollenberg MD
        • Wallace JL
        Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway.
        Nat Med. 2001; 7: 821-826
        • Vergnolle N
        Protease-activated receptors as drug targets in inflammation and pain.
        Pharmacol Ther. 2009; 123: 292-309
        • Wang H
        • Ubl JJ
        • Reiser G
        Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling.
        Glia. 2002; 37: 53-63
        • Wang W
        • Bo Q
        • Du J
        • Yu X
        • Zhu K
        • Cui J
        • Zhao H
        • Wang Y
        • Shi B
        • Zhu Y
        Endogenous H2S sensitizes PAR4-induced bladder pain.
        Am J Physiol Renal Physiol. 2018; 314: F1077-F1F86
        • Wang Z
        • Jiang C
        • He Q
        • Matsuda M
        • Han Q
        • Wang K
        • Bang S
        • Ding H
        • Ko MC
        • Ji RR
        Anti-PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates.
        Sci Transl Med. 2020; 12eaaw6471
        • Wangzhou A
        • McIlvried LA
        • Paige C
        • Barragan-Iglesias P
        • Shiers S
        • Ahmad A
        • Guzman CA
        • Dussor G
        • Ray PR
        • Gereau RWt
        • Price TJ
        Pharmacological target-focused transcriptomic analysis of native vs cultured human and mouse dorsal root ganglia.
        Pain. 2020; 161: 1497-1517
        • Wysoczynski M
        • Liu R
        • Kucia M
        • Drukala J
        • Ratajczak MZ
        Thrombin regulates the metastatic potential of human rhabdomyosarcoma cells: Distinct role of PAR1 and PAR3 signaling.
        Mol Cancer Res. 2010; 8: 677-690
        • Zhao P
        • Lieu T
        • Barlow N
        • Sostegni S
        • Haerteis S
        • Korbmacher C
        • Liedtke W
        • Jimenez-Vargas NN
        • Vanner SJ
        • Bunnett NW
        Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to cause inflammation and pain.
        J Biol Chem. 2015; 290: 13875-13887
        • Zhu WJ
        • Yamanaka H
        • Obata K
        • Dai Y
        • Kobayashi K
        • Kozai T
        • Tokunaga A
        • Noguchi K
        Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia.
        Brain Res. 2005; 1041: 205-211