This paper is only available as a PDF. To read, Please Download here.
Peripheral nerve injury induces a myriad of immune symptoms that impacts pain and
overall quality of life. Recent studies have revealed neuroimmune interactions in
various pain states are important to mediate sex differences in their etiology. A
described source of these sexual dimorphisms is the innate immune system, which promotes
inflammation and pro-nociception through bidirectional signaling with the nervous
system. The spatiotemporal interactions between macrophages and sensory neurons could
hold the key to explain ascribed differences between sexes. To date, studies have
found it difficult to adequately display these interactions. We are poised to answer
important questions regarding the recruitment and morphology of peripheral macrophages
in key tissues of the pain system: the dorsal root ganglia (DRG) and sciatic nerve
(ScN). Our approach utilized ScaleS1, an optical clearing method, to clear whole DRGs
and ScNs after peripheral nerve injury. With the concomitant use of 2-photon microscopy
and transgenic reporter lines, we visualized macrophage dynamics involved in neuropathic
pain development following injury. Male and female mice were sacrificed at the peak
of nerve injury-induced pain development and DRGs and ScNs were harvested, processed,
and cleared. Whole tissue images were captured via 2-photon microscopy and were processed
and analyzed using Imaris imaging software. Macrophage infiltration was increased
in the ipsilateral DRGs after nerve injury in males. We also assessed macrophage size
and morphology to understand activation states in the context of nervous tissue inflammation.
We found sex and injury dependent clustering of macrophage morphology populations
in both the DRG and ScN. The altered mechanisms by which the male and female immune
systems respond to nerve injury are still topics of further research, however; the
continued use of next-generation imaging with advanced whole tissue image analysis
remains an important tool in understanding the reciprocal interactions between neuronal
and nonneuronal cells. This research is supported by the grants: APS Future Leader's
Grant (M.D.B), and the Rita Allen Foundation Grant (M.D.B), NINDS K22NS096030 (M.D.B),
and the U.T System STARS.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to The Journal of PainAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
Article info
Identification
Copyright
© 2021 Published by Elsevier Inc.