Local and Systemic Expression Pattern of MMP-2 and MMP-9 in Complex Regional Pain Syndrome


      • MMP-2 and MMP-9 play important roles in inflammation and in pain processes.
      • MMP-2 and MMP-9 were analyzed in CRPS, pain controls and healthy people (skin/serum).
      • Ipsilateral MMP-2 and contralateral MMP-9 were lower in CRPS with trophic changes.
      • MMP-2 (contra-) and MMP-9 (ipsi- and contralateral) correlated with CRPS severity.
      • MMP-2 and MMP-9 are differently expressed depending on clinical phenotype in CRPS.


      Matrix metalloproteinases (MMP)-2 and MMP-9 play important roles in inflammation as well as in pain processes. For this reason, we compared the concentrations of these enzymes in skin and serum of patients with complex regional pain syndrome (CRPS), other pain diseases and healthy subjects. We analyzed ipsi- and contralateral skin biopsies of 18 CRPS patients, as well as in 10 pain controls and 9 healthy subjects. Serum samples were analyzed from 20 CRPS, 17 pain controls and 17 healthy subjects. All samples were analyzed with ELISA. Concentrations were then compared to clinical data as well as to quantitative sensory testing data.MMP-2 was increased in both ipsi- and contralateral skin biopsies of CRPS patients compared to healthy subjects. While low ipsilateral MMP-2 was associated with trophic changes, contralateral MMP-2 inversely correlated with the CRPS severity. MMP-9 was also locally increased in ipsilateral CRPS skin, and higher ipsi- and contralateral MMP-9 levels correlated with CRPS severity.
      We conclude that MMP-2 and MMP-9 are differently expressed depending on the clinical phenotype in CRPS.


      This article describes an upregulation of MMPs in CRPS and pain controls and shows different expression of MMP-2 and -9 depending on clinical phenotype in CRPS. These results provide evidence that MMP-2 and -9 play a key role in CRPS pathophysiology.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Alam M
        • Mohammad A
        • Rahman S
        • Todd K
        • Shuaib A.
        Hyperthermia up-regulates matrix metalloproteinases and accelerates basement membrane degradation in experimental stroke.
        Neurosci Lett. 2011; 495: 135-139
        • Bee A
        • Barnes A
        • Jones MD
        • Robertson DH
        • Clegg PD
        • Carter SD.
        Canine TIMP-2: purification, characterization and molecular detection.
        Vet J. 2000; 160: 126-134
        • Birklein F
        • Ajit SK
        • Goebel A
        • Perez R
        • Sommer C.
        Complex regional pain syndrome - phenotypic characteristics and potential biomarkers.
        Nat Rev Neurol. 2018; 14: 272-284
        • Birklein F
        • Drummond PD
        • Li W
        • Schlereth T
        • Albrecht N
        • Finch PM
        • Dawson LF
        • Clark JD
        • Kingery WS.
        Activation of cutaneous immune responses in complex regional pain syndrome.
        J Pain. 2014; 15: 485-495
        • Birklein F
        • Ibrahim A
        • Schlereth T
        • Kingery WS.
        The Rodent tibia fracture model: a critical review and comparison with the complex regional pain syndrome literature.
        J Pain. 2018; 19: 1102.e1101-1102.e1119
        • Chattopadhyay S
        • Myers RR
        • Janes J
        • Shubayev V.
        Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve.
        Brain Behav Immun. 2007; 21: 561-568
        • Colnot C
        • Thompson Z
        • Miclau T
        • Werb Z
        • Helms JA.
        Altered fracture repair in the absence of MMP9.
        Development. 2003; 130: 4123-4133
        • Creemers EE
        • Cleutjens JP
        • Smits JF
        • Daemen MJ.
        Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?.
        Circ Res. 2001; 89: 201-210
        • Daniluk U
        • Daniluk J
        • Guzinska-Ustymowicz K
        • Pryczynicz A
        • Lebensztejn D.
        Usefulness of metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in clinical characterisation of children with newly diagnosed Crohn’s disease.
        J Paediatr Child Health. 2020; 56: 1233-1241
        • Demestre M
        • Parkin-Smith G
        • Petzold A
        • Pullen AH.
        The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis.
        J Neuroimmunol. 2005; 159: 146-154
        • Dimova V
        • Birklein F.
        Complex regional pain syndrome (CRPS): An update.
        Der Anaesthesist. 2019; 68: 115-128
        • Fan YX
        • Hu L
        • Zhu SH
        • Han Y
        • Liu WT
        • Yang YJ
        • Li QP.
        Paeoniflorin attenuates postoperative pain by suppressing Matrix Metalloproteinase-9/2 in mice.
        Eur J Pain. 2018; 22: 272-281
        • Frankova J
        • Diamantova D
        • Vrbkova J
        • Ulrichova J.
        Influence of hydrogencalcium salts of oxidized cellulose on MMP-2, MMP-9 and TNF-alpha production and wound healing in non-healing wounds.
        Acta Dermatovener Cr. 2013; 21: 219-223
      1. Gauss CF (Akademie der Wissenschaften (Göttingen GSe. Carl Friedrich Gauss Werke. Wahrscheinlichkeitsrechnung und Geometrie. Universitäts-Druckerei (Göttingen) 1863-1906.4, 1863

        • Giannelli G
        • Erriquez R
        • Iannone F
        • Marinosci F
        • Lapadula G
        • Antonaci S.
        MMP-2, MMP-9, TIMP-1 and TIMP-2 levels in patients with rheumatoid arthritis and psoriatic arthritis.
        Clin Exp Rheumatol. 2004; 22: 335-338
        • Guo TZ
        • Wei T
        • Tajerian M
        • Clark JD
        • Birklein F
        • Goebel A
        • Li WW
        • Sahbaie P
        • Escolano FL
        • Herrnberger M
        • Kramer HH
        • Kingery WS.
        Complex regional pain syndrome patient immunoglobulin M has pronociceptive effects in the skin and spinal cord of tibia fracture mice.
        Pain. 2020; 161: 797-809
        • Hannocks MJ
        • Zhang X
        • Gerwien H
        • Chashchina A
        • Burmeister M
        • Korpos E
        • Song J
        • Sorokin L.
        The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes.
        Matrix Biol. 2019; 75-76: 102-113
        • Harden RN.
        Objectification of the diagnostic criteria for CRPS.
        Pain Med. 2010; 11: 1212-1215
        • Haubeck H-D
        in: Gressner A.M. Arndt T. Lexikon der Medizinischen Laboratoriumsdiagnostik. Springer Berlin Heidelberg, Berlin, Heidelberg2019: 1589-1590 (Eds.)
        • Heijmans-Antonissen C
        • Wesseldijk F
        • Munnikes RJ
        • Huygen FJ
        • van der Meijden P
        • Hop WC
        • Hooijkaas H
        • Zijlstra FJ.
        Multiplex bead array assay for detection of 25 soluble cytokines in blister fluid of patients with complex regional pain syndrome type 1.
        Mediators Inflamm. 2006; 2006: 28398
        • Helyes Z
        • Tékus V
        • Szentes N
        • Pohóczky K
        • Botz B
        • Kiss T
        • Kemény Á
        • Környei Z
        • Tóth K
        • Lénárt N
        • Ábrahám H
        • Pinteaux E
        • Francis S
        • Sensi S
        • Dénes Á
        • Goebel A.
        Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1-induced mechanisms.
        in: Proceedings of the National Academy of Sciences of the United States of America. 116. 2019: 13067-13076
        • Hou C
        • Miao Y
        • Ji H
        • Wang S
        • Liang G
        • Zhang Z
        • Hong W
        6-Gingerol inhibits hair cycle via induction of MMP2 and MMP9 expression.
        An Acad Bras Cienc. 2017; 89: 2707-2717
        • Hou C
        • Miao Y
        • Wang J
        • Wang X
        • Chen CY
        • Hu ZQ.
        Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-β expression.
        Drug Des Devel Ther. 2015; 9: 5373-5383
        • Itoh T
        • Matsuda H
        • Tanioka M
        • Kuwabara K
        • Itohara S
        • Suzuki R.
        The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis.
        J Immunol. 2002; 169: 2643-2647
        • Jarrousse F
        • Boisnic S
        • Branchet MC
        • Beranger JY
        • Godeau G
        • Breton L
        • Bernard BA
        • Mahe YF.
        Identification of clustered cells in human hair follicle responsible for MMP-9 gelatinolytic activity: consequences for the regulation of hair growth.
        Int J Dermatol. 2001; 40: 385-392
        • Jensen MP
        • McFarland CA.
        Increasing the reliability and validity of pain intensity measurement in chronic pain patients.
        Pain. 1993; 55: 195-203
        • Jin EH
        • Zhang E
        • Ko Y
        • Sim WS
        • Moon DE
        • Yoon KJ
        • Hong JH
        • Lee WH.
        Genome-wide expression profiling of complex regional pain syndrome.
        PloS one. 2013; 8: e79435
        • Jobard E
        • Tredan O
        • Postoly D
        • Andre F
        • Martin AL
        • Elena-Herrmann B
        • Boyault S.
        A systematic evaluation of blood serum and plasma pre-analytics for metabolomics cohort studies.
        Int J Mol Sci. 2016; 17
        • Kawasaki Y
        • Xu ZZ
        • Wang X
        • Park JY
        • Zhuang ZY
        • Tan PH
        • Gao YJ
        • Roy K
        • Corfas G
        • Lo EH
        • Ji RR.
        Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain.
        Nat Med. 2008; 14: 331-336
        • Kherif S
        • Dehaupas M
        • Lafuma C
        • Fardeau M
        • Alameddine HS.
        Matrix metalloproteinases MMP-2 and MMP-9 in denervated muscle and injured nerve.
        Neuropathol Appl Neurobiol. 1998; 24: 309-319
        • Kingery WS.
        Role of neuropeptide, cytokine, and growth factor signaling in complex regional pain syndrome.
        Pain Med. 2010; 11: 1239-1250
        • Konig S
        • Bayer M
        • Dimova V
        • Herrnberger M
        • Escolano-Lozano F
        • Bednarik J
        • Vlckova E
        • Rittner H
        • Schlereth T
        • Birklein F.
        The serum protease network-one key to understand complex regional pain syndrome pathophysiology.
        Pain. 2019; 160: 1402-1409
        • König S
        • Bayer M
        • Dimova V
        • Herrnberger M
        • Escolano-Lozano F
        • Bednarik J
        • Vlckova E
        • Rittner H
        • Schlereth T
        • Birklein F.
        The serum protease network-one key to understand complex regional pain syndrome pathophysiology.
        Pain. 2019; 160: 1402-1409
        • Kramer HH
        • Eberle T
        • Uceyler N
        • Wagner I
        • Klonschinsky T
        • Muller LP
        • Sommer C
        • Birklein F.
        TNF-alpha in CRPS and 'normal' trauma–significant differences between tissue and serum.
        Pain. 2011; 152: 285-290
        • La Fleur M
        • Underwood JL
        • Rappolee DA
        • Werb Z
        Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1.
        J Exp Med. 1996; 184: 2311-2326
        • Ladwig GP
        • Robson MC
        • Liu R
        • Kuhn MA
        • Muir DF
        • Schultz GS.
        Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers.
        Wound Repair Regen. 2002; 10: 26-37
        • Le NT
        • Xue M
        • Castelnoble LA
        • Jackson CJ.
        The dual personalities of matrix metalloproteinases in inflammation.
        Front Biosci. 2007; 12: 1475-1487
        • Lee SJ
        • Park SS
        • Cho YH
        • Park K
        • Kim EJ
        • Jung KH
        • Kim SK
        • Kim WJ
        • Moon SK.
        Activation of matrix metalloproteinase-9 by TNF-alpha in human urinary bladder cancer HT1376 cells: the role of MAP kinase signaling pathways.
        Oncol Rep. 2008; 19: 1007-1013
        • Leira R
        • Sobrino T
        • Rodriguez-Yanez M
        • Blanco M
        • Arias S
        • Castillo J.
        Mmp-9 immunoreactivity in acute migraine.
        Headache. 2007; 47: 698-702
        • Leppert D
        • Hughes P
        • Huber S
        • Erne B
        • Grygar C
        • Said G
        • Miller KM
        • Steck AJ
        • Probst A
        • Fuhr P.
        Matrix metalloproteinase upregulation in chronic inflammatory demyelinating polyneuropathy and nonsystemic vasculitic neuropathy.
        Neurology. 1999; 53: 62-70
      2. Lian S, Xia Y, Khoi PN, Ung TT, Yoon HJ, Kim NH, Kim KK, Jung YD. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-small ka, CyrillicB, and AP-1 pathways in human endothelial cells. Toxicology 338:104-116, 2015

      3. Lindsey ML. MMP induction and inhibition in myocardial infarction. Heart Fail Rev 9:7-19, 2004

      4. Liu D, Zhang R, Wu J, Pu Y, Yin X, Cheng Y, Wu J, Feng C, Luo Y, Zhang J. Interleukin-17A promotes esophageal adenocarcinoma cell invasiveness through ROS-dependent, NF-kappaB-mediated MMP-2/9 activation. Oncol Rep 37:1779-1785, 2017

      5. Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, Sheng S, Alexander P, Sang QA, Shi YE. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem 272:20479-20483, 1997

      6. Maeda A, Sobel RA. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55:300-309, 1996

      7. Mawrin C, Brunn A, Rocken C, Schroder JM. Peripheral neuropathy in systemic lupus erythematosus: pathomorphological features and distribution pattern of matrix metalloproteinases. Acta Neuropathol 105:365-372, 2003

      8. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 274:21491-21494, 1999

      9. Park JY, Park JH, Kim SJ, Kwon JE, Kang HY, Lee ES, Kim YC. Two histopathological patterns of postinflammatory hyperpigmentation: epidermal and dermal. J Cutan Pathol 44:118-124, 2017

      10. Rayment EA, Upton Z. Finding the culprit: a review of the influences of proteases on the chronic wound environment. Int J Low Extrem Wounds 8:19-27, 2009

      11. Rohani MG, Parks WC. Matrix remodeling by MMPs during wound repair. Matrix Biol 44-46:113-121, 2015

      12. Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Botefur IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihofner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B. Quantitative sensory testing in the german research network on neuropathic pain (DFNS): standardized protocol and reference values. Pain 123:231-243, 2006

      13. Rolke R, Baron R, Maier C, Tolle TR, Treede RD, Beyer A, Binder A, Birbaumer N, Birklein F, Botefur IC, Braune S, Flor H, Huge V, Klug R, Landwehrmeyer GB, Magerl W, Maihofner C, Rolko C, Schaub C, Scherens A, Sprenger T, Valet M, Wasserka B. Quantitative sensory testing in the german research network on neuropathic pain (DFNS): Standardized protocol and reference values (vol 123, pg 231, 2006). Pain 125:197-197, 2006

      14. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia 39:279-291, 2002

      15. Schaefer L, Han X, August C, Matzkies F, Lorenz T, Schaefer RM. Differential regulation of glomerular gelatinase B (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in obese Zucker rats. Diabetologia 40:1035-1043, 1997

      16. Shubayev VI, Myers RR. Upregulation and interaction of TNFalpha and gelatinases A and B in painful peripheral nerve injury. Brain Res 855:83-89, 2000

      17. Siebert H, Dippel N, Mader M, Weber F, Bruck W. Matrix metalloproteinase expression and inhibition after sciatic nerve axotomy. J Neuropathol Exp Neurol 60:85-93, 2001

      18. Skiles JW, Gonnella NC, Jeng AY. The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr Med Chem 11:2911-2977, 2004

      19. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Investig 103:1237-1241, 1999

      20. Tardaguila-Garcia A, Garcia-Morales E, Garcia-Alamino JM, Alvaro-Afonso FJ, Molines-Barroso RJ, Lazaro-Martinez JL. Metalloproteinases in chronic and acute wounds: A systematic review and meta-analysis. Wound Repair Regen 27:415-420, 2019

      21. Toth M, Sohail A, Fridman R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methods Mol Biol 878:121-135, 2012

      22. Uceyler N, Eberle T, Rolke R, Birklein F, Sommer C. Differential expression patterns of cytokines in complex regional pain syndrome. Pain 132:195-205, 2007

      23. Uceyler N, Kafke W, Riediger N, He L, Necula G, Toyka KV, Sommer C. Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology 74:1806-1813, 2010

      24. Xue M, McKelvey K, Shen K, Minhas N, March L, Park SY, Jackson CJ. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology 53:2270-2279, 2014

      25. Yin N, Tan X, Liu H, He F, Ding N, Gou J, Yin T, He H, Zhang Y, Tang X. A novel indomethacin/methotrexate/MMP-9 siRNA in situ hydrogel with dual effects of anti-inflammatory activity and reversal of cartilage disruption for the synergistic treatment of rheumatoid arthritis. Nanoscale 12:8546-8562, 2020

      26. Yin Y, Guo R, Shao Y, Ge M, Miao C, Cao L, Yang Y, Hu L. Pretreatment with resveratrol ameliorate trigeminal neuralgia by suppressing matrix metalloproteinase-9/2 in trigeminal ganglion. Int Immunopharmacol 72:339-347, 2019

      27. Yong VW. Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6:931-944, 2005