Advertisement

Error Processing and Pain: A New Perspective

      Abstract

      Errors put organisms in danger. Upon error commission, error processing allows for the updating of behavior that proved ineffective in light of the current context and goals, and for the activation of behavioral defensive systems. Pain, on the other hand, signals actual or potential danger to one's physical integrity and, likewise, motivates protective behavior. These parallels suggest the existence of cross-links between pain and error processing but so far their relationship remains elusive. In this review, we tie together findings from the field of pain research with those from electroencephalography studies on error processing [specifically the Error Related Negativity (ERN) and Positivity (Pe)]. More precisely, we discuss 3 plausible associations: Firstly, pain may enhance error processing as it increases error salience. Secondly, persons fearful of pain may be particularly vigilant towards painful errors and thus show a stronger neural response to them. Thirdly, the ERN as a component of the neural response to error commission is considered an endophenotype of threat sensitivity. As high sensitivity to pain threats is known to incite avoidance behavior, this raises the intriguing possibility that neural signatures of error processing predict pain-related protective behaviors, such as avoidance. We propose an integration of these findings into a common framework to inspire future research.

      Perspective

      Inspired by research in anxiety disorders, we discuss the potential bi-directional relationships between error processing and pain, and identify future directions to examine the neural and psychological processes involved in acute and chronic pain and respective avoidance behavior.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aarts K
        • Pourtois G.
        Anxiety not only increases, but also alters early error-monitoring functions.
        Cognitive Affect Behav Neurosci. 2010; 10: 479-492https://doi.org/10.3758/CABN.10.4.479
        • Andreatta M
        • Michelmann S
        • Pauli P
        • Hewig J.
        Learning processes underlying avoidance of negative outcomes.
        Psychophysiology. 2017; 54: 578-590https://doi.org/10.1111/psyp.12822
        • Anokhin AP
        • Golosheykin S
        • Heath AC.
        Heritability of frontal brain function related to action monitoring.
        Psychophysiology. 2008; 45: 524-534https://doi.org/10.1111/j.1469-8986.2008.00664.x
        • Armfield JM.
        Cognitive vulnerability: A model of the etiology of fear.
        Clin Psychol Rev. 2006; 26: 746-768https://doi.org/10.1016/j.cpr.2006.03.007
        • Asmundson GJ
        • Katz J.
        Understanding the co-occurrence of anxiety disorders and chronic pain: State-of-the-art.
        Depress Anxiety. 2009; 26: 888-901https://doi.org/10.1002/da.20600
        • Balconi M
        • Crivelli D.
        FRN and P300 ERP effect modulation in response to feedback sensitivity: The contribution of punishment-reward system (BIS/BAS) and Behaviour Identification of action.
        Neurosci Res. 2010; 66: 162-172https://doi.org/10.1016/j.neures.2009.10.011
        • Baliki M
        • Apkarian AV.
        Nociception, pain, negative moods, and behavior selection.
        Neuron. 2015; 87: 474-491https://doi.org/10.1016/j.neuron.2015.06.005
        • Barke A
        • Bode S
        • Dechent P
        • Schmidt-Samoa C
        • Van Heer C
        • Stahl J.
        To err is (perfectly) human: behavioural and neural correlates of error processing and perfectionism.
        Soc Cognitive Affect Neurosci. 2017; 12: 1647-1657https://doi.org/10.1093/scan/nsx082
        • Bernstein PS
        • Scheffers MK
        • Coles MG.
        " Where did I go wrong?" A psychophysiological analysis of error detection.
        J Exp Psychol Hum Percept Perform. 1995; 21: 1312https://doi.org/10.1037/0096-1523.21.6.1312
        • Boksem MA
        • Tops M
        • Wester AE
        • Meijman TF
        • Lorist MM.
        Error-related ERP components and individual differences in punishment and reward sensitivity.
        Brain Res. 2006; 1101: 92-101https://doi.org/10.1016/j.brainres.2006.05.004
        • Brázdil M
        • Roman R
        • Daniel P
        • Rektor I.
        Intracerebral error-related negativity in a simple go/nogo task.
        J Psychophysiol. 2005; 19: 244-255https://doi.org/10.1027/0269-8803.19.4.244
        • Buhr K
        • Dugas MJ.
        The intolerance of uncertainty scale: Psychometric properties of the English version.
        Behav Res Ther. 2002; 40: 931-945https://doi.org/10.1016/s0005-7967(01)00092-4
        • Bunzli S
        • Smith A
        • Schütze R
        • Lin I
        • O'Sullivan P
        Making sense of low back pain and pain-related fear.
        J Orthopaedic Sports Phys Ther. 2017; 47: 628-636https://doi.org/10.2519/jospt.2017.7434
        • Chiu PH
        • Deldin PJ.
        Neural evidence for enhanced error detection in major depressive disorder.
        Am J Psychiatry. 2007; 164: 608-616https://doi.org/10.1176/ajp.2007.164.4.608
        • Coles MG
        • Scheffers MK
        • Holroyd CB.
        Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing.
        Biol Psychol. 2001; 56: 173-189https://doi.org/10.1016/s0301-0511(01)00076-x
        • Davies PL
        • Segalowitz SJ
        • Dywan J
        • Pailing PE.
        Error-negativity and positivity as they relate to other ERP indices of attentional control and stimulus processing.
        Biol Psychol. 2001; 56: 191-206https://doi.org/10.1016/s0301-0511(01)00080-1
        • de Bruin GO
        • Rassin E
        • van der Heiden C
        • Muris P.
        Psychometric properties of a Dutch version of the Intolerance of Uncertainty Scale.
        Netherlands J Psychol. 2006; 62: 87-92https://doi.org/10.1007/BF03061055
        • Dehaene S
        • Posner MI
        • Tucker DM.
        Localization of a neural system for error detection and compensation.
        Psychol Sci. 1994; 5: 303-305https://doi.org/10.1111/j.1467-9280.1994.tb00630.x
        • Desender K
        • Boldt A
        • Verguts T
        • Donner TH.
        Confidence predicts speed-accuracy tradeoff for subsequent decisions.
        Elife. 2019; 8: e43499https://doi.org/10.7554/eLife.43499
        • Di Gregorio F
        • Maier ME
        • Steinhauser M.
        Errors can elicit an error positivity in the absence of an error negativity: Evidence for independent systems of human error monitoring.
        Neuroimage. 2018; 172: 427-436https://doi.org/10.1016/j.neuroimage.2018.01.081
        • Drizinsky J
        • Zülch J
        • Gibbons H
        • Stahl J.
        How personal standards perfectionism and evaluative concerns perfectionism affect the error positivity and post-error behavior with varying stimulus visibility.
        Cognitive Affect Behav Neurosci. 2016; 16: 876-887https://doi.org/10.3758/s13415-016-0438-z
        • Eccleston C
        • Crombez G.
        Pain demands attention: A cognitive–affective model of the interruptive function of pain.
        Psychol Bull. 1999; 125: 356https://doi.org/10.1037/0033-2909.125.3.356
        • Ehlis AC
        • Deppermann S
        • Fallgatter AJ.
        Performance monitoring and post-error adjustments in adults with attention-deficit/hyperactivity disorder: An EEG analysis.
        J Psychiatry Neurosci. 2018; 43: 396-406https://doi.org/10.1503/jpn.170118
        • Eimer M
        • Kiss M
        • Press C
        • Sauter D.
        The roles of feature-specific task set and bottom-up salience in attentional capture: An ERP study.
        J Exp Psychol Hum Percept Perform. 2009; 35: 1316https://doi.org/10.1037/a0015872
        • Endrass T
        • Reuter B
        • Kathmann N.
        ERP correlates of conscious error recognition: Aware and unaware errors in an antisaccade task.
        Eur J Neurosci. 2007; 26: 1714-1720https://doi.org/10.1111/j.1460-9568.2007.05785.x
        • Endrass T
        • Schuermann B
        • Kaufmann C
        • Spielberg R
        • Kniesche R
        • Kathmann N.
        Performance monitoring and error significance in patients with obsessive-compulsive disorder.
        Biol Psychol. 2010; 84: 257-263https://doi.org/10.1016/j.biopsycho.2010.02.002
        • Falkenstein M.
        ERP correlates of erroneous performance. Errors, Conflicts, and the Brain.
        Curr Opin Performance Monitoring. 2004; 1: 5-14https://doi.org/10.1027/0269-8803.18.4.153
        • Falkenstein M
        • Hohnsbein J
        • Hoormann J
        • Blanke L.
        Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks.
        Electroencephalogr Clin Neurophysiol. 1991; 78: 447-455https://doi.org/10.1016/0013-4694(91)90062-9
        • Falkenstein M
        • Hoormann J
        • Christ S
        • Hohnsbein J.
        ERP components on reaction errors and their functional significance: A tutorial.
        Biol Psychol. 2000; 51: 87-107https://doi.org/10.1016/s0301-0511(99)00031-9
        • Fischerauer SF
        • Talaei-Khoei M
        • Vissers FL
        • Chen N
        • Vranceanu A-M.
        Pain anxiety differentially mediates the association of pain intensity with function depending on level of intolerance of uncertainty.
        J Psychiatr Res. 2018; 97: 30-37https://doi.org/10.1016/j.jpsychires.2017.11.006
        • Forster B
        • Pavone EF.
        Electrophysiological correlates of crossmodal visual distractor congruency effects: evidence for response conflict.
        Cognitive Affect Behav Neurosci. 2008; 8: 65-73https://doi.org/10.3758/cabn.8.1.65
        • Frank MJ
        • Woroch BS
        • Curran T.
        Error-related negativity predicts reinforcement learning and conflict biases.
        Neuron. 2005; 47: 495-501https://doi.org/10.1016/j.neuron.2005.06.020
        • Ganushchak LY
        • Schiller NO.
        Motivation and semantic context affect brain error-monitoring activity: An event-related brain potentials study.
        Neuroimage. 2008; 39: 395-405https://doi.org/10.1016/j.neuroimage.2007.09.001
        • Gehring WJ
        • Goss B
        • Coles MG
        • Meyer DE
        • Donchin E.
        A neural system for error detection and compensation.
        Psychol Sci. 1993; 4: 385-390https://doi.org/10.1111/j.1467-9280.1993.tb00586.x
        • Gottesman II
        • Gould TD.
        The endophenotype concept in psychiatry: Etymology and strategic intentions.
        Am J Psychiatry. 2003; 160: 636-645https://doi.org/10.1176/appi.ajp.160.4.636
        • Goubert L
        • Crombez G
        • Van Damme S.
        The role of neuroticism, pain catastrophizing and pain-related fear in vigilance to pain: a structural equations approach.
        Pain. 2004; 107: 234-241https://doi.org/10.1016/j.pain.2003.11.005
        • Hajcak G.
        What we've learned from mistakes: Insights from error-related brain activity.
        Curr Dir Psychol Sci. 2012; 21: 101-106https://doi.org/10.1177/0963721412436809
        • Hajcak G
        • Foti D.
        Errors are aversive: Defensive motivation and the error-related negativity.
        Psychol Sci. 2008; 19: 103-108https://doi.org/10.1111/j.1467-9280.2008.02053.x
        • Hajcak G
        • Franklin ME
        • Foa EB
        • Simons RF.
        Increased error-related brain activity in pediatric obsessive-compulsive disorder before and after treatment.
        Am J Psychiatry. 2008; 165: 116-123https://doi.org/10.1176/appi.ajp.2007.07010143
        • Hajcak G
        • Klawohn J
        • Meyer A.
        The utility of event-related potentials in clinical psychology.
        Ann Rev Clin Psychol. 2019; 15: 71-95https://doi.org/10.1146/annurev-clinpsy-050718-095457
        • Hajcak G
        • McDonald N
        • Simons RF.
        Anxiety and error-related brain activity.
        Biol Psychol. 2003; 64: 77-90https://doi.org/10.1016/s0301-0511(03)00103-0
        • Hajcak G
        • McDonald N
        • Simons RF.
        Error-related psychophysiology and negative affect.
        Brain Cogn. 2004; 56: 189-197https://doi.org/10.1016/j.bandc.2003.11.001
        • Hajcak G
        • Moser JS
        • Yeung N
        • Simons RF.
        On the ERN and the significance of errors.
        Psychophysiology. 2005; 42: 151-160https://doi.org/10.1111/j.1469-8986.2005.00270.x
        • Hajcak G
        • Simons RF.
        Error-related brain activity in obsessive–compulsive undergraduates.
        Psychiatry Res. 2002; 110: 63-72https://doi.org/10.1016/s0165-1781(02)00034-3
        • Holmes AJ
        • Pizzagalli DA.
        Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder.
        Arch Gen Psychiatry. 2008; 65: 179-188https://doi.org/10.1001/archgenpsychiatry.2007.19
        • Holroyd CB
        • Coles MG.
        The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity.
        Psychol Rev. 2002; 109: 679https://doi.org/10.1037/0033-295X.109.4.679
        • Jackson F
        • Nelson BD
        • Hajcak G.
        The uncertainty of errors: Intolerance of uncertainty is associated with error-related brain activity.
        Biol Psychol. 2016; 113: 52-58https://doi.org/10.1016/j.biopsycho.2015.11.007
        • Jackson F
        • Nelson BD
        • Proudfit GH.
        In an uncertain world, errors are more aversive: Evidence from the error-related negativity.
        Emotion. 2015; 15: 12https://doi.org/10.1037/emo0000020
        • Jelinčić V
        • Torta DM
        • Van Diest I
        • von Leupoldt A.
        Error-related negativity relates to the neural processing of brief aversive bodily sensations.
        Biol Psychol. 2020; 152107872https://doi.org/10.1016/j.biopsycho.2020.107872
        • Karos K
        • Meulders A
        • Gatzounis R
        • Seelen HA
        • Geers RP
        • Vlaeyen JW.
        Fear of pain changes movement: Motor behaviour following the acquisition of pain-related fear.
        Eur J Pain. 2017; 21: 1432-1442https://doi.org/10.1002/ejp.1044
        • Karsdorp PA
        • Ranson S
        • Schrooten MG
        • Vlaeyen JW.
        Pain catastrophizing, threat, and the informational value of mood: Task persistence during a painful finger pressing task.
        Pain. 2012; 153: 1410-1417https://doi.org/10.1016/j.pain.2012.02.026
        • Koban L
        • Brass M
        • Lynn MT
        • Pourtois G.
        Placebo analgesia affects brain correlates of error processing.
        PLoS One. 2012; 7: e49784https://doi.org/10.1371/journal.pone.0049784
        • Ladouceur CD
        • Dahl RE
        • Birmaher B
        • Axelson DA
        • Ryan ND
        Decreased Pe, but not ERN, amplitude following treatment of children diagnosed with an anxiety disorder: preliminary results.
        Psychophysiology. BLACKWELL PUBLISHING, 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND2007 (pp. S99-S99)
        • Ladouceur CD
        • Slifka JS
        • Dahl RE
        • Birmaher B
        • Axelson DA
        • Ryan ND.
        Altered error-related brain activity in youth with major depression.
        Developl Cognit Neurosci. 2012; 2: 351-362https://doi.org/10.1016/j.dcn.2012.01.005
        • Leeuw M
        • Goossens ME
        • Linton SJ
        • Crombez G
        • Boersma K
        • Vlaeyen JW.
        The fear-avoidance model of musculoskeletal pain: Current state of scientific evidence.
        J Behav Med. 2007; 30: 77-94https://doi.org/10.1007/s10865-006-9085-0
        • Luu P
        • Collins P
        • Tucker DM.
        Mood, personality, and self-monitoring: negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring.
        J Exper Psychol: General. 2000; 129: 43https://doi.org/10.1037//0096-3445.129.1.43
        • Madden VJ
        • Bellan V
        • Russek LN
        • Camfferman D
        • Vlaeyen JW
        • Moseley GL.
        Pain by association? Experimental modulation of human pain thresholds using classical conditioning.
        J Pain. 2016; 17: 1105-1115https://doi.org/10.1016/j.jpain.2016.06.012
        • Maier ME
        • Yeung N
        • Steinhauser M.
        Error-related brain activity and adjustments of selective attention following errors.
        Neuroimage. 2011; 56: 2339-2347https://doi.org/10.1016/j.neuroimage.2011.03.083
        • Manoach DS
        • Agam Y.
        Neural markers of errors as endophenotypes in neuropsychiatric disorders.
        Front Human Neurosci. 2013; 7: 350https://doi.org/10.3389/fnhum.2013.00350
        • McDonald JB
        • Bozzay ML
        • Bresin K
        • Verona E.
        Facets of externalizing psychopathology in relation to inhibitory control and error processing.
        Int J Psychophysiol. 2019; https://doi.org/10.1016/j.ijpsycho.2019.08.007
        • Meier ML
        • Stämpfli P
        • Vrana A
        • Humphreys BK
        • Seifritz E
        • Hotz-Boendermaker S.
        Neural correlates of fear of movement in patients with chronic low back pain vs. pain-free individuals.
        Front Human Neurosci. 2016; 10: 386https://doi.org/10.3389/fnhum.2016.00386
        • Meyer A
        • Gawlowska M.
        Evidence for specificity of the impact of punishment on error-related brain activity in high versus low trait anxious individuals.
        Int J Psychophysiol. 2017; 120: 157-163https://doi.org/10.1016/j.ijpsycho.2017.08.001
        • Meyer A
        • Hajcak G
        • Glenn CR
        • Kujawa AJ
        • Klein DN.
        Error-related brain activity is related to aversive potentiation of the startle response in children, but only the ERN is associated with anxiety disorders.
        Emotion. 2017; 17: 487https://doi.org/10.1037/emo0000243
        • Meyer A
        • Hajcak G
        • Torpey-Newman DC
        • Kujawa A
        • Klein DN.
        Enhanced error-related brain activity in children predicts the onset of anxiety disorders between the ages of 6 and 9.
        J Abnorm Psychol. 2015; 124: 266https://doi.org/10.1037/abn0000044
        • Meyer A
        • Nelson B
        • Perlman G
        • Klein DN
        • Kotov R.
        A neural biomarker, the error-related negativity, predicts the first onset of generalized anxiety disorder in a large sample of adolescent females.
        J Child Psychol Psychiatr. 2018; 59: 1162-1170https://doi.org/10.1111/jcpp.12922
        • Miltner WH
        • Braun CH
        • Coles MG.
        Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection.
        J Cogn Neurosci. 1997; 9: 788-798https://doi.org/10.1162/jocn.1997.9.6.788
        • Moser J
        • Moran T
        • Schroder H
        • Donnellan B
        • Yeung N.
        On the relationship between anxiety and error monitoring: A meta-analysis and conceptual framework.
        Front Human Neurosci. 2013; 7: 466https://doi.org/10.3389/fnhum.2013.00466
        • Moser JS
        • Hajcak G
        • Simons RF.
        The effects of fear on performance monitoring and attentional allocation.
        Psychophysiology. 2005; 42: 261-268https://doi.org/10.1111/j.1469-8986.2005.00290.x
        • Moser JS
        • Moran TP
        • Jendrusina AA.
        Parsing relationships between dimensions of anxiety and action monitoring brain potentials in female undergraduates.
        Psychophysiology. 2012; 49: 3-10https://doi.org/10.1111/j.1469-8986.2011.01279.x
        • Nieuwenhuis S
        • Aston-Jones G
        • Cohen JD.
        Decision making, the P3, and the locus coeruleus–norepinephrine system.
        Psychol Bull. 2005; 131: 510https://doi.org/10.1037/0033-2909.131.4.510
        • Nieuwenhuis S
        • Ridderinkhof KR
        • Blom J
        • Band GP
        • Kok A.
        Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task.
        Psychophysiology. 2001; 38: 752-760https://doi.org/10.1111/1469-8986.3850752
        • Olvet DM
        • Hajcak G.
        The error-related negativity (ERN) and psychopathology: Toward an endophenotype.
        Clin Psychol Rev. 2008; 28: 1343-1354https://doi.org/10.1016/j.cpr.2008.07.003
        • Olvet DM
        • Hajcak G.
        The effect of trial-to-trial feedback on the error-related negativity and its relationship with anxiety.
        Cognitive Affect Behav Neurosci. 2009; 9: 427-433https://doi.org/10.3758/CABN.9.4.427
        • Olvet DM
        • Hajcak G.
        Reliability of error-related brain activity.
        Brain Res. 2009; 1284 (doi:): 89-99https://doi.org/10.1016/j.brainres.2009.05.079
        • Overbeek TJ
        • Nieuwenhuis S
        • Ridderinkhof KR.
        Dissociable components of error processing: On the functional significance of the Pe vis-à-vis the ERN/Ne.
        J Psychophysiol. 2005; 19: 319-329https://doi.org/10.1027/0269-8803.19.4.319
        • Overmeyer R
        • Berghäuser J
        • Dieterich R
        • Wolff M
        • Goschke T
        • Endrass T.
        The error-related negativity predicts self-control failures in daily life.
        Front Human Neurosci. 2021; 14: 616https://doi.org/10.3389/fnhum.2020.614979
        • Pasion R
        • Barbosa F.
        ERN as a transdiagnostic marker of the internalizing-externalizing spectrum: A dissociable meta-analytic effect.
        Neurosci Biobehav Rev. 2019; 103: 133-149https://doi.org/10.1016/j.neubiorev.2019.06.013
        • Pasion R
        • Paiva TO
        • Fernandes C
        • Almeida R
        • Barbosa F.
        ERN modulation under sustained threat: A pre-registered report.
        J Res Personal. 2018; 77: 137-146https://doi.org/10.1016/j.jrp.2018.10.009
        • Paul K
        • Walentowska W
        • Bakic J
        • Dondaine T
        • Pourtois G.
        Modulatory effects of happy mood on performance monitoring: Insights from error-related brain potentials.
        Cognitive, Affect Behav Neurosci. 2017; 17: 106-123https://doi.org/10.3758/s13415-016-0466-8
        • Pfabigan D
        • Pintzinger N
        • Siedek D
        • Lamm C
        • Derntl B
        • Sailer U.
        Feelings of helplessness increase ERN amplitudes in healthy individuals.
        Neuropsychologia. 2013; 51: 613-621https://doi.org/10.1016/j.neuropsychologia.2012.12.008
        • Piedimonte A
        • Guerra G
        • Vighetti S
        • Carlino E.
        Measuring expectation of pain: Contingent negative variation in placebo and nocebo effects.
        Eur J Pain. 2017; 21: 874-885https://doi.org/10.1002/ejp.990
        • Piedimonte A
        • Zamfira DA
        • Guerra G
        • Vighetti S
        • Carlino E.
        Pain expectation and avoidance in the social context: An electrophysiological study.
        J Physiolog Sci. 2021; 71: 29https://doi.org/10.1186/s12576-021-00813-1
        • Proudfit GH
        • Inzlicht M
        • Mennin D.
        Anxiety and error monitoring: The importance of motivation and emotion.
        Front Human Neurosci. 2013; 7: 636https://doi.org/10.3389/fnhum.2013.00636
        • Ridderinkhof KR
        • Ramautar JR
        • Wijnen JG.
        To PE or not to PE: A P3-like ERP component reflecting the processing of response errors.
        Psychophysiology. 2009; 46: 531-538https://doi.org/10.1111/j.1469-8986.2009.00790.x
        • Riesel A
        • Endrass T
        • Kaufmann C
        • Kathmann N.
        Overactive error-related brain activity as a candidate endophenotype for obsessive-compulsive disorder: Evidence from unaffected first-degree relatives.
        Am J Psychiatry. 2011; 168: 317-324https://doi.org/10.1176/appi.ajp.2010.10030416
        • Riesel A
        • Klawohn J
        • Grützmann R
        • Kaufmann C
        • Heinzel S
        • Bey K
        • Lennertz L
        • Wagner M
        • Kathmann N.
        Error-related brain activity as a transdiagnostic endophenotype for obsessive-compulsive disorder, anxiety and substance use disorder.
        Psychol Med. 2019; 49: 1207-1217https://doi.org/10.1017/S0033291719000199
        • Riesel A
        • Weinberg A
        • Endrass T
        • Kathmann N
        • Hajcak G.
        Punishment has a lasting impact on error-related brain activity.
        Psychophysiology. 2012; 49: 239-247https://doi.org/10.1111/j.1469-8986.2011.01298.x
        • Riesel A
        • Weinberg A
        • Endrass T
        • Meyer A
        • Hajcak G.
        The ERN is the ERN is the ERN? Convergent validity of error-related brain activity across different tasks.
        Biol Psychol. 2013; 93: 377-385https://doi.org/10.1016/j.biopsycho.2013.04.007
        • Riesel A
        • Weinberg A
        • Moran T
        • Hajcak G.
        Time course of error-potentiated startle and its relationship to error-related brain activity.
        J Psychophysiol. 2013; https://doi.org/10.1027/0269-8803/a000093
        • Rizzo PA
        • Pierelli F
        • Pozzessere G
        • Fattapposta F
        • Sanarelli L
        • Morocutti C.
        Pain, anxiety, and contingent negative variation: A clinical and pharmacological study.
        Biol Psychiatry. 1985; 20: 1297-1302https://doi.org/10.1016/0006-3223(85)90114-3
        • Ruchsow M
        • Grön G
        • Reuter K
        • Spitzer M
        • Hermle L
        • Kiefer M.
        Error-related brain activity in patients with obsessive-compulsive disorder and in healthy controls.
        J Psychophysiol. 2005; 19: 298-304https://doi.org/10.1027/0269-8803.19.4.298
        • Siniatchkin M KP
        • Gerber WD
        Contingent negative variation in subjects at risk for migraine without aura.
        Pain. 2001; 94: 159-167https://doi.org/10.1016/S0304-3959(01)00350-5
        • Speed BC
        • Jackson F
        • Nelson BD
        • Infantolino ZP
        • Hajcak G.
        Unpredictability increases the error-related negativity in children and adolescents.
        Brain Cogn. 2017; 119: 25-31https://doi.org/10.1016/j.bandc.2017.09.006
        • Stahl J
        • Acharki M
        • Kresimon M
        • Völler F
        • Gibbons H.
        Perfect error processing: Perfectionism-related variations in action monitoring and error processing mechanisms.
        Int J Psychophysiol. 2015; 97: 153-162https://doi.org/10.1016/j.ijpsycho.2015.06.002
        • Steele VR
        • Anderson NE
        • Claus ED
        • Bernat EM
        • Rao V
        • Assaf M
        • Pearlson GD
        • Calhoun VD
        • Kiehl KA.
        Neuroimaging measures of error-processing: Extracting reliable signals from event-related potentials and functional magnetic resonance imaging.
        Neuroimage. 2016; 132: 247-260https://doi.org/10.1016/j.neuroimage.2016.02.046
        • Steinhauser M
        • Yeung N.
        Error awareness as evidence accumulation: Effects of speed-accuracy trade-off on error signaling.
        Front Human Neurosci. 2012; 6: 240https://doi.org/10.3389/fnhum.2012.00240
        • Stemmer B
        • Segalowitz SJ
        • Witzke W
        • Schönle PW.
        Error detection in patients with lesions to the medial prefrontal cortex: An ERP study.
        Neuropsychologia. 2004; 42: 118-130https://doi.org/10.1016/S0028-3932(03)00121-0
        • Sucec J
        • Herzog M
        • Van Diest I
        • Van den Bergh O
        • von Leupoldt A.
        The impact of dyspnea and threat of dyspnea on error processing.
        Psychophysiology. 2019; 56: e13278https://doi.org/10.1111/psyp.13278
        • Sueyoshi T
        • Sugimoto F
        • Ji Katayama
        • Fukushima H.
        Neural correlates of error processing reflect individual differences in interoceptive sensitivity.
        Int J Psychophysiol. 2014; 94: 278-286https://doi.org/10.1016/j.ijpsycho.2014.10.001
        • Tan Y
        • Van den Bergh O
        • Qiu J
        • Von Leupoldt A.
        The impact of unpredictability on dyspnea perception, anxiety and interoceptive error processing.
        Front Physiolog. 2019; 10: 535https://doi.org/10.3389/fphys.2019.00535
        • Tan Y
        • Vandeput J
        • Qiu J
        • Van den Bergh O
        • von Leupoldt A
        The error-related negativity for error processing in interoception.
        Neuroimage. 2019; 184: 386-395https://doi.org/10.1016/j.neuroimage.2018.09.037
        • Tanovic E
        • Gee DG
        • Joormann J.
        Intolerance of uncertainty: Neural and psychophysiological correlates of the perception of uncertainty as threatening.
        Clin Psychol Rev. 2018; https://doi.org/10.1016/j.cpr.2018.01.001
        • Traxler J
        • Philips RV
        • von Leupoldt A
        • Vlaeyen JW.
        Trial and error (-related negativity): An odyssey of integrating different experimental paradigms.
        J Trial Error. 2020; 1https://doi.org/10.36850/e2
        • Traxler J
        • von Leupoldt A
        • Vlaeyen JW.
        Pain by mistake: investigating a link between error-related negativity and pain avoidance behavior.
        Pain. 2021; https://doi.org/10.1097/j.pain.0000000000002358
        • Van Veen V
        • Carter CS.
        The anterior cingulate as a conflict monitor: fMRI and ERP studies.
        Physiol Behav. 2002; 77: 477-482https://doi.org/10.1016/s0031-9384(02)00930-7
        • Vidal F
        • Hasbroucq T
        • Grapperon J
        • Bonnet M.
        Is the ‘error negativity'specific to errors?.
        Biol Psychol. 2000; 51: 109-128https://doi.org/10.1016/s0301-0511(99)00032-0
        • Vlaeyen JW
        • Linton SJ.
        Fear-avoidance and its consequences in chronic musculoskeletal pain: A state of the art.
        Pain. 2000; 85: 317-332https://doi.org/10.1016/S0304-3959(99)00242-0
        • Vlaeyen JW
        • Linton SJ.
        Fear-avoidance model of chronic musculoskeletal pain: 12 years on.
        Pain. 2012; 153: 1144-1147https://doi.org/10.1016/j.pain.2011.12.009
        • Vocat R
        • Pourtois G
        • Vuilleumier P.
        Unavoidable errors: A spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task.
        Neuropsychologia. 2008; 46: 2545-2555https://doi.org/10.1016/j.neuropsychologia.2008.04.006
        • Weinberg A
        • Dieterich R
        • Riesel A.
        Error-related brain activity in the age of RDoC: A review of the literature.
        Int J Psychophysiol. 2015; 98: 276-299https://doi.org/10.1016/j.ijpsycho.2015.02.029
        • Weinberg A
        • Hajcak G.
        Longer term test–retest reliability of error-related brain activity.
        Psychophysiology. 2011; 48: 1420-1425https://doi.org/10.1111/j.1469-8986.2011.01206.x
        • Weinberg A
        • Klein DN
        • Hajcak G.
        Increased error-related brain activity distinguishes generalized anxiety disorder with and without comorbid major depressive disorder.
        J Abnorm Psychol. 2012; 121: 885https://doi.org/10.1037/a0028270
        • Weinberg A
        • Meyer A
        • Hale-Rude E
        • Perlman G
        • Kotov R
        • Klein DN
        • Hajcak G.
        Error-related negativity (ERN) and sustained threat: Conceptual framework and empirical evaluation in an adolescent sample.
        Psychophysiology. 2016; 53: 372-385https://doi.org/10.1111/psyp.12538
        • Weinberg A
        • Olvet DM
        • Hajcak G.
        Increased error-related brain activity in generalized anxiety disorder.
        Biol Psychol. 2010; 85: 472-480https://doi.org/10.1016/j.biopsycho.2010.09.011
        • Weinberg A
        • Riesel A
        • Hajcak G.
        Integrating multiple perspectives on error-related brain activity: The ERN as a neural indicator of trait defensive reactivity.
        Motiv Emot. 2012; 36: 84-100https://doi.org/10.1007/s11031-011-9269-y
        • Willems AL
        • Jelinčić V
        • Vlaeyen JW
        • von Leupoldt A
        • Torta DM.
        Is it a painful error? The effect of unpredictability and intensity of punishment on the error-related negativity, and somatosensory evoked potentials.
        Biol Psychol. 2021; 108177https://doi.org/10.1016/j.biopsycho.2021.108177
        • Wiswede D
        • Münte TF
        • Goschke T
        • Rüsseler J.
        Modulation of the error-related negativity by induction of short-term negative affect.
        Neuropsychologia. 2009; 47: 83-90https://doi.org/10.1016/j.neuropsychologia.2008.08.016
        • Yang Z.
        Psychometric properties of the Intolerance of Uncertainty Scale (IUS) in a Chinese-speaking population.
        Behav Cognitive Psychotherapy. 2013; 41: 500-504https://doi.org/10.1017/S1352465812000975
        • Yeung N
        • Botvinick MM
        • Cohen JD.
        The neural basis of error detection: Conflict monitoring and the error-related negativity.
        Psychol Rev. 2004; 111: 931https://doi.org/10.1037/0033-295x.111.4.939
        • Zambrano-Vazquez L
        • Allen JJ.
        Differential contributions of worry, anxiety, and obsessive compulsive symptoms to ERN amplitudes in response monitoring and reinforcement learning tasks.
        Neuropsychologia. 2014; 61: 197-209https://doi.org/10.1016/j.neuropsychologia.2014.06.023