Advertisement

Bestrophin-1 Participates in Neuropathic Pain Induced by Spinal Nerve Transection but not Spinal Nerve Ligation

Published:December 12, 2022DOI:https://doi.org/10.1016/j.jpain.2022.12.005

      Highlights

      • Spinal L5 nerve transection up-regulates bestrophin-1 and GAP43 expression in DRG.
      • Spinal nerve ligation (L5/L6) enhanced GAP43 but not bestrophin-1 expression in DRG.
      • SNT increased bestrophin-1 immunoreactivity in CGRP but not in IB4 DRG.
      • Bestrophin-1 recombinant channel injected in naïve rats induced tactile allodynia.

      Abstract

      Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL.

      Perspective

      SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aigner L
        • Arber S
        • Kapfhammer JP
        • Laux T
        • Schneider C
        • Botteri F
        • Brenner HR
        • Caroni P
        Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice.
        Cell. 1995; 83: 269-278https://doi.org/10.1016/0092-8674(95)90168-x
        • Al-Jumaily M
        • Kozlenkov A
        • Mechaly I
        • Fichard A
        • Matha V
        • Scamps F
        • Valmier J
        • Carroll P
        Expression of three distinct families of calcium-activated chloride channel genes in the mouse dorsal root ganglion.
        Neurosci Bull. 2007; 23: 293-299https://doi.org/10.1007/s12264-007-0044-8
        • André S
        • Boukhaddaoui H
        • Campo B
        • Al-Jumaily M
        • Mayeux V
        • Greuet D
        • Valmier J
        • Scamps F
        Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons.
        J Neurophysiol. 2003; 90: 3764-3773https://doi.org/10.1152/jn.00449.2003
        • Bill A
        • Hall ML
        • Borawski J
        • Hodgson C
        • Jenkins J
        • Piechon P
        • Popa O
        • Rothwell C
        • Tranter P
        • Tria S
        • Wagner T
        • Whitehead L
        • Gaither LA
        Small molecule-facilitated degradation of ANO1 protein: A new targeting approach for anticancer therapeutics.
        J Biol Chem. 2014; 289: 11029-11041https://doi.org/10.1074/jbc.M114.549188
        • Boedtkjer DM
        • Kim S
        • Jensen AB
        • Matchkov VM
        • Andersson KE
        New selective inhibitors of calcium-activated chloride channels - T16Ainh-A01, CaCCinh-A01 and MONNA - what do they inhibit?.
        Br J Pharmacol. 2015; 172: 4158-4172https://doi.org/10.1111/bph.13201
        • Boudes M
        • Sar C
        • Menigoz A
        • Hilaire C
        • Péquignot MO
        • Kozlenkov A
        • Marmorstein A
        • Carroll P
        • Valmier J
        • Scamps F
        Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl- current expression in axotomized sensory neurons.
        J Neurosci. 2009; 29: 10063-10071https://doi.org/10.1523/JNEUROSCI.1312-09.2009
        • Boudes M
        • Scamps F
        Calcium-activated chloride current expression in axotomized sensory neurons: What for?.
        Front Mol Neurosci. 2012; 5: 35https://doi.org/10.3389/fnmol.2012.00035
        • Bradley E
        • Fedigan S
        • Webb T
        • Hollywood MA
        • Thornbury KD
        • McHale NG
        • Sergeant GP
        Pharmacological characterization of TMEM16A currents.
        Channels. 2014; 8: 308-320https://doi.org/10.4161/chan.28065
        • Caputo A
        • Caci E
        • Ferrera L
        • Pedemonte N
        • Barsanti C
        • Sondo E
        • Pfeffer U
        • Ravazzolo R
        • Zegarra-Moran O
        • Galietta LJ
        TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity.
        Science. 2008; 322: 590-594https://doi.org/10.1126/science.1163518
        • Chaplan SR
        • Bach FW
        • Pogrel JW
        • Chung JM
        • Yaksh TL
        Quantitative assessment of tactile allodynia in the rat paw.
        J Neurosci Methods. 1994; 53: 55-63https://doi.org/10.1016/0165-0270(94)90144-9
        • Chen Q
        • Kong L
        • Xu Z
        • Cao N
        • Tang X
        • Gao R
        • Zhang J
        • Deng S
        • Tan C
        • Zhang M
        • Wang Y
        • Zhang L
        • Ma K
        • Li L
        • Si J
        The Role of TMEM16A/ERK/NK-1 signaling in dorsal root ganglia neurons in the development of neuropathic pain induced by spared nerve injury (SNI).
        Mol Neurobiol. 2021; 58: 5772-5789https://doi.org/10.1007/s12035-021-02520-9
        • Cho H
        • Yang YD
        • Lee J
        • Lee B
        • Kim T
        • Jang Y
        • Back SK
        • Na HS
        • Harfe BD
        • Wang F
        • Raouf R
        • Wood JN
        • Oh U
        The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons.
        Nat Neurosci. 2012; 15: 1015-1021https://doi.org/10.1038/nn.3111
        • Coggeshall RE
        • Reynolds ML
        • Woolf CJ
        Distribution of the growth associated protein GAP-43 in the central processes of axotomized primary afferents in the adult rat spinal cord; presence of growth cone-like structures.
        Neurosci Lett. 1991; 131: 37-41https://doi.org/10.1016/0304-3940(91)90331-m
        • De La Fuente R
        • Namkung W
        • Mills A
        • Verkman AS
        Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel.
        Mol Pharmacol. 2008; 73: 758-768https://doi.org/10.1124/mol.107.043208
        • Dixon WJ
        Efficient analysis of experimental observations.
        Annu Rev Pharmacol Toxicol. 1980; 20: 441-462https://doi.org/10.1146/annurev.pa.20.040180.002301
        • Djouhri L
        • Fang X
        • Koutsikou S
        • Lawson SN
        Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias.
        Pain. 2012; 153: 1824-1836https://doi.org/10.1016/j.pain.2012.04.019
        • Fukuoka T
        • Yamanaka H
        • Kobayashi K
        • Okubo M
        • Miyoshi K
        • Dai Y
        • Noguchi K
        Re-evaluation of the phenotypic changes in L4 dorsal root ganglion neurons after L5 spinal nerve ligation.
        Pain. 2012; 153: 68-79https://doi.org/10.1016/j.pain.2011.09.009
        • García G
        • Martínez-Rojas VA
        • Oviedo N
        • Murbartián J
        Blockade of anoctamin-1 in injured and uninjured nerves reduces neuropathic pain.
        Brain Res. 2018; 1696: 38-48https://doi.org/10.1016/j.brainres.2018.06.001
        • García G
        • Martínez-Rojas VA
        • Rocha-González HI
        • Granados-Soto V
        • Murbartián J
        Evidence for the participation of Ca2+-activated chloride channels in formalin-induced acute and chronic nociception.
        Brain Res. 2014; 1579: 35-44https://doi.org/10.1016/j.brainres.2014.07.011
        • García G
        • Méndez-Reséndiz KA
        • Oviedo N
        • Murbartián J
        PKC- and PKA-dependent phosphorylation modulates TREK-1 function in naïve and neuropathic rats.
        J Neurochem. 2021; 157: 2039-2054https://doi.org/10.1111/jnc.15204
        • Hartzell C
        • Putzier I
        • Arreola J
        Calcium-activated chloride channels.
        Annu Rev Physiol. 2005; 67: 719-758https://doi.org/10.1146/annurev.physiol.67.032003.154341
        • Hu J
        • Mata M
        • Hao S
        • Zhang G
        • Fink DJ
        Central sprouting of uninjured small fiber afferents in the adult rat spinal cord following spinal nerve ligation.
        Eur J Neurosci. 2004; 20: 1705-1712https://doi.org/10.1111/j.1460-9568.2004.03652.x
        • Hu-Tsai M
        • Winter J
        • Emson PC
        • Woolf CJ
        Neurite outgrowth and GAP-43 mRNA expression in cultured adult rat dorsal root ganglion neurons: Effects of NGF or prior peripheral axotomy.
        J Neuroscience Res. 1994; 39: 634-645https://doi.org/10.1002/jnr.490390603
        • Kim SH
        • Chung JM
        An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat.
        Pain. 1992; 50: 355-363https://doi.org/10.1016/0304-3959(92)90041-9
        • Langley PC
        • Van Litsenburg C
        • Cappelleri JC
        • Carroll D
        The burden associated with neuropathic pain in Western Europe.
        J Med Econ. 2013; 16: 85-95https://doi.org/10.3111/13696998.2012.729548
        • Lee B
        • Cho H
        • Jung J
        • Yang YD
        • Yang DJ
        • Oh U
        Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity.
        Mol Pain. 2014; 10: 5https://doi.org/10.1186/1744-8069-10-5
        • Lee S
        • Yoon BE
        • Berglund K
        • Oh SJ
        • Park H
        • Shin HS
        • Augustine GJ
        • Lee CJ
        Channel-mediated tonic GABA release from glia.
        Science. 2010; 330: 790-796https://doi.org/10.1126/science.1184334
        • Liu B
        • Linley JE
        • Du X
        • Zhang X
        • Ooi L
        • Zhang H
        • Gamper N
        The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl channels.
        J Clin Invest. 2010; 120: 1240-1252https://doi.org/10.1172/JCI41084
        • Liu CN
        • Wall PD
        • Ben-Dor E
        • Michaelis M
        • Amir R
        • Devor M
        Tactile allodynia in the absence of C-fiber activation: Altered firing properties of DRG neurons following spinal nerve injury.
        Pain. 2000; 85: 503-521https://doi.org/10.1016/S0304-3959(00)00251-7
        • Manassero G
        • Repetto IE
        • Cobianchi S
        • Valsecchi V
        • Bonny C
        • Rossi F
        • Vercelli A
        Role of JNK isoforms in the development of neuropathic pain following sciatic nerve transection in the mouse.
        Mol Pain. 2012; 8: 39https://doi.org/10.1186/1744-8069-8-39
        • Mayer ML
        A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture.
        J Physiol. 1985; 364: 217-239https://doi.org/10.1113/jphysiol.1985.sp015740
        • Mearow KM
        • Kril Y
        • Gloster A
        • Diamond J
        Expression of NGF receptor and GAP-43 mRNA in DRG neurons during collateral sprouting and regeneration of dorsal cutaneous nerves.
        J Neurobiol. 1994; 5: 127-142https://doi.org/10.1002/neu.480250205
        • Megat S
        • Shiers S
        • Moy JK
        • Barragan-Iglesias P
        • Pradhan G
        • Seal RP
        • Dussor G
        • Price TJ
        A critical role for dopamine D5 receptors in pain chronicity in male mice.
        J Neurosci. 2018; 38: 379-397https://doi.org/10.1523/JNEUROSCI.2110-17.2017
        • Mestre C
        • Pélissier T
        • Fialip J
        • Wilcox G
        • Eschalier A
        A method to perform direct transcutaneous intrathecal injection in rats.
        J Pharmacol Toxicol Methods. 1994; 32: 197-200https://doi.org/10.1016/1056-8719(94)90087-6
        • Nahin RL
        • Ren K
        • De León M
        • Ruda M
        Primary sensory neurons exhibit altered gene expression in a rat model of neuropathic pain.
        Pain. 1994; 58: 95-108https://doi.org/10.1016/0304-3959(94)90189-9
        • Namkung W
        • Yao Z
        • Finkbeiner WE
        • Verkman AS
        Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction.
        FASEB J. 2011; 25: 4048-4062https://doi.org/10.1096/fj.11-191627
        • Obata K
        • Yamanaka H
        • Dai Y
        • Mizushima T
        • Fukuoka T
        • Tokunaga A
        • Yoshikawa H
        • Koichi Noguchi K
        Contribution of degeneration of motor and sensory fibers to pain behavior and the changes in neurotrophic factors in rat dorsal root ganglion.
        Exp Neurol. 2004; 188: 149-160https://doi.org/10.1016/j.expneurol.2004.03.012
        • Oh SJ
        • Hwang SJ
        • Jung J
        • Yu K
        • Kim J
        • Choi JY
        • Hartzell HC
        • Roh EJ
        • Lee CJ
        MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1.
        Mol Pharmacol. 2013; 84: 726-735https://doi.org/10.1124/mol.113.087502
        • Park H
        • Oh SJ
        • Han KS
        • Woo DH
        • Mannaioni G
        • Traynelis SF
        • Lee CJ
        Bestrophin-1 encodes for the Ca2+-activated anion channel in hippocampal astrocytes.
        J Neurosci. 2009; 29: 13063-13073https://doi.org/10.1523/JNEUROSCI.3193-09.2009
        • Pineda-Farias JB
        • Barragán-Iglesias P
        • Loeza-Alcocer E
        • Torres-López JE
        • Rocha-González HI
        • Pérez-Severiano F
        • Delgado-Lezama R
        • Granados-Soto V
        Role of anoctamin-1 and bestrophin-1 in spinal nerve ligation-induced neuropathic pain in rats.
        Mol Pain. 2015; 11: 41https://doi.org/10.1186/s12990-015-0042-1
        • Ramer MS
        • French GD
        • Bisby MA
        Wallerian degeneration is required for both neuropathic pain and sympathetic sprouting into the DRG.
        Pain. 1997; 72: 71-78https://doi.org/10.1016/s0304-3959(97)00019-5
        • Salinas-Abarca AB
        • Velazquez-Lagunas I
        • Franco-Enzástiga U
        • Torres-López JE
        • Rocha-González HI
        • Granados-Soto V
        ATF2, but not ATF3, participates in the maintenance of nerve injury-induced tactile allodynia and thermal hyperalgesia.
        Mol Pain. 2018; 14: 1-14https://doi.org/10.1177/1744806918787427
        • Scott RH
        • Sutton KG
        • Griffin A
        • Stapleton SR
        • Currie KP
        Aspects of calcium-activated chloride currents: A neuronal perspective.
        Pharmacol Ther. 1995; 66: 535-565https://doi.org/10.1016/0163-7258(95)00018-c
        • Sheth RN
        • Dorsi MJ
        • Li Y
        • Murinson BB
        • Belzberg AJ
        • Griffin JW
        • Meyer RA
        Mechanical hyperalgesia after an L5 ventral rhizotomy or an L5 ganglionectomy in the rat.
        Pain. 2002; 96: 63-72https://doi.org/10.1016/s0304-3959(01)00429-8
        • Treede RD
        The International Association for the Study of Pain definition of pain: As valid in 2018 as in 1979, but in need of regularly updated footnotes.
        Pain Rep. 2018; 3: e643https://doi.org/10.1097/PR9.0000000000000643
        • van Hecke O
        • Austin SK
        • Khan RA
        • Smith BH
        • Torrance N
        Neuropathic pain in the general population: A systematic review of epidemiological studies.
        Pain. 2014; 155: 654-662https://doi.org/10.1016/j.pain.2013.11.013
        • Wang X
        • Wang C
        • Zeng J
        • Xu X
        • Hwang PYK
        • Yee WC
        • Ng YK
        • Wang S
        Gene transfer to dorsal root ganglia by intrathecal injection: Effects on regeneration of peripheral nerves.
        Molecular Ther. 2005; 12: 314-320https://doi.org/10.1016/j.ymthe.2005.03.032
        • Woolf CJ
        • Reynolds ML
        • Molander C
        • O'Brien C
        • Lindsay RM
        • Benowitz LI
        The growth-associated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury.
        Neurosci. 1990; 34: 465-478https://doi.org/10.1016/0306-4522(90)90155-w
        • Yang YD
        • Cho H
        • Koo JY
        • Tak MH
        • Cho Y
        • Shim WS
        • Park SP
        • Lee J
        • Lee B
        • Kim BM
        • Raouf R
        • Shin YK
        • Oh U
        TMEM16A confers receptor-activated calcium-dependent chloride conductance.
        Nature. 2008; 455: 1210-1215https://doi.org/10.1038/nature07313
        • Yao MZ
        • Gu JF
        • Wang JH
        • Sun LY
        • Lang MF
        • Liu J
        • Zhao ZQ
        • Liu XY
        Interleukin-2 gene therapy of chronic neuropathic pain.
        Neuroscience. 2002; 112: 409-416https://doi.org/10.1016/s0306-4522(02)00078-7
        • Zhang M
        • Gao C-X
        • Wnag Y-P
        • Ma K-T
        • Li L
        • Yin J-W
        • Dai Z-G
        • Wang S
        • Si J-Q
        The association between the expression of PAR2 and TMEM16A and neuropathic pain.
        Mol Med Rep. 2018; 17: 3744-3750https://doi.org/10.3892/mmr.2017.8295
        • Zimmermann M
        Ethical guidelines for investigations of experimental pain in conscious animals.
        Pain. 1983; 16: 109-110https://doi.org/10.1016/0304-3959(83)90201-4