Advertisement

Sex Dimorphism in Resolvin D5-induced Analgesia in Rat Models of Trigeminal Pain

Published:December 27, 2022DOI:https://doi.org/10.1016/j.jpain.2022.12.013

      Highlights

      • Antihyperalgesic effect of resolvin D5 (RvD5) on trigeminal neuropathic pain in females and males.
      • RvD5 decreased IL-6 levels only in male rats.
      • RvD5 reduced acute nociceptive and inflammatory pain only in male rats.

      Abstract

      Resolvin D5 (RvD5) is a specialized pro-resolving lipid mediator with potent anti-inflammatory and analgesic properties. Orofacial pain conditions, especially those that are chronic, present clinical challenges in terms of pharmacological management. Thus, new therapeutic options are clearly warranted. Herein, we investigated the antinociceptive effect of RvD5 in the chronic constriction injury of the infraorbital nerve (CCI-ION) model and in the orofacial formalin test in female and male Wistar rats. Our results indicated that repeated subarachnoid medullary injections of RvD5 at 10 ng resulted in a significant reduction of heat and mechanical hyperalgesia induced by the CCI-ION in male and female rats, but males were more sensitive to RvD5 effects. In addition, after CCI-ION, interleukin-6 (IL-6) level was increased in the trigeminal nucleus caudalis of male, but not female rats, which was reduced by RvD5 repeated treatment. No changes in the levels of IL-1β were found. Minocycline blocked the effect of RvD5 in male rats but failed to affect RvD5 antinociceptive effect in females. Moreover, a single medullary injection of RvD5 caused a significant reduction of formalin-induced facial grooming, in phases I and II of the test, but only in male rats. This study demonstrated for the first time the analgesic effect of RvD5 in trigeminal pain models, and corroborated previous evidence of sex dichotomy, with a greater effect in males. This article presents a translational potential of RvD5 for targeted therapies aiming at the control of acute and chronic trigeminal pain, but further studies are needed to elucidate its sex-related mechanisms.

      Perspective

      This study demonstrated that RvD5 may provide the benefits for trigeminal neuropathic pain treatment in male and female rats, but its effect on inflammatory orofacial pain seems to be restricted only to males. Also, it provided the evidence for sex dichotomy in the mechanisms related to the antinociceptive effect of RvD5.

      Graphical Abstract

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The Journal of Pain
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sessle BJ
        Chronic orofacial pain: Models, mechanisms, and genetic and related environmental influences.
        Int J Mol Sci. 2021; 22: 7112https://doi.org/10.3390/ijms22137112
        • Calder PC
        Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology?.
        Br J Clin Pharmacol. 2013; 75: 645-662https://doi.org/10.1111/j.1365-2125.2012.04374.x
        • Luo X
        • Gu Y
        • Tao X
        • Serhan CN
        • Ji RR
        Resolvin D5 inhibits neuropathic and inflammatory pain in male but not female mice: Distinct actions of D-series resolvins in chemotherapy-induced peripheral neuropathy.
        Front Pharmacol. 2019; 10: 745https://doi.org/10.3389/fphar.2019.00745
        • Salem Jr, N
        • Litman B
        • Kim HY
        • Gawrisch K
        Mechanisms of action of docosahexaenoic acid in the nervous system.
        Lipids. 2001; 36: 945-959https://doi.org/10.1007/s11745-001-0805-6
        • Serhan CN
        • Chiang N
        Endogenous pro-resolving and anti-inflammatory lipid mediators: A new pharmacologic genus.
        Br J Pharmacol. 2008; 153: S200-S215https://doi.org/10.1038/sj.bjp.0707489
        • Serhan CN
        • Hong S
        • Gronert K
        • Colgan SP
        • Devchand PR
        • Mirick G
        • Moussignac RL
        Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals.
        J Exp Med. 2002; 196: 1025-1037https://doi.org/10.1084/jem.20020760
        • Werz O
        • Gerstmeier J
        • Libreros S
        • De la Rosa X
        • Werner M
        • Norris PC
        • Chiang N
        • Serhan CN
        Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity.
        Nat Commun. 2018; 9: 59https://doi.org/10.1038/s41467-017-02538-5
        • Hong S
        • Gronert K
        • Devchand PR
        • Moussignac RL
        • Serhan CN
        Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation.
        J Biol Chem. 2003; 278: 14677-14687https://doi.org/10.1074/jbc.M300218200
        • Chiang N
        • Fredman G
        • Bäckhed F
        • Oh SF
        • Vickery T
        • Schmidt BA
        • Serhan CN
        Infection regulates pro-resolving mediators that lower antibiotic requirements.
        Nature. 2012; 484: 524-528https://doi.org/10.1038/nature11042
        • Sorokin AV
        • Norris PC
        • English JT
        • Dey AK
        • Chaturvedi A
        • Baumer Y
        • Silverman J
        • Playford MP
        • Serhan CN
        • Mehta NN
        Identification of proresolving and inflammatory lipid mediators in human psoriasis.
        J Clin Lipidol. 2018; 12: 1047-1060https://doi.org/10.1016/j.jacl.2018.03.091
        • Chun HW
        • Lee J
        • Pham TH
        • Yoon JH
        • Oh DK
        • Oh J
        • Yoon DY
        Resolvin D5, a lipid mediator, inhibits production of interleukin-6 and CCL5 via the ERK-NF-κB signaling pathway in lipopolysaccharide-stimulated THP-1 cells.
        J Microbiol Biotechnol. 2020; 30: 85-92https://doi.org/10.4014/jmb.1907.07033
        • Gobbetti T
        • Dalli J
        • Colas RA
        • Federici Canova D
        • Aursnes M
        • Bonnet D
        • Alric L
        • Vergnolle N
        • Deraison C
        • Hansen TV
        • Serhan CN
        • Perretti M
        Protectin D1(n-3 DPA) and resolvin D5(n-3 DPA) are effectors of intestinal protection.
        Proc Natl Acad Sci U S A. 2017; 114: 3963-3968https://doi.org/10.1073/pnas.1617290114
        • Yamada H
        • Saegusa J
        • Sendo S
        • Ueda Y
        • Okano T
        • Shinohara M
        • Morinobu A
        Effect of resolvin D5 on T cell differentiation and osteoclastogenesis analyzed by lipid mediator profiling in the experimental arthritis.
        Sci Rep. 2021; 11: 17312https://doi.org/10.1038/s41598-021-96530-1
        • Zhang L
        • Terrando N
        • Xu ZZ
        • Bang S
        • Jordt SE
        • Maixner W
        • Serhan CN
        • Ji RR
        Distinct analgesic actions of DHA and DHA-derived specialized pro-resolving mediators on post-operative pain after bone fracture in mice.
        Front Pharmacol. 2018; 9: 412https://doi.org/10.3389/fphar.2018.00412
        • El-Tallawy HN
        • Farghaly WM
        • Rageh TA
        • Shehata GA
        • Hakeem MNA
        • Badry R
        • Kandil MR
        Prevalence of trigeminal neuralgia in Al-Quseir city (Red sea Governorate), Egypt.
        Clin Neurol Neurosurg. 2013; 115: 1792-1794https://doi.org/10.1016/j.clineuro.2013.04.014
        • Ferrari MD
        • Goadsby PG
        • Burstein R
        • Kurth T
        • Ayata C
        • Charles A
        • Ashina M
        • van den Maagdenberg Amjm
        • Dodick DW
        Migraine.
        Nat Rev Dis Primers. 2022; 8https://doi.org/10.1038/s41572-021-00328-4
        • Maarbjerg S
        • Gozalov A
        • Olesen J
        • Bendtsen L
        Trigeminal neuralgia–a prospective systematic study of clinical characteristics in 158 patients.
        Headache. 2014; 54: 1574-1582https://doi.org/10.1111/head.12441
        • Chichorro JG
        • Zampronio AR
        • Cabrini DA
        • Franco CR
        • Rae GA
        Mechanisms operated by endothelin ETA and ETB receptors in the trigeminal ganglion contribute to orofacial thermal hyperalgesia induced by infraorbital nerve constriction in rats.
        Neuropeptides. 2009; 43: 133-142https://doi.org/10.1016/j.npep.2008.12.001
        • Chichorro JG
        • Zampronio AR
        • Rae GA
        Endothelin ET(B) receptor antagonist reduces mechanical allodynia in rats with trigeminal neuropathic pain.
        Exp Biol Med (Maywood). 2006; 231: 1136-1140https://doi.org/10.1016/j.pain.2006.02.010
        • Chichorro JG
        • Zampronio AR
        • Souza GEP
        • Rae GA
        Orofacial cold hyperalgesia due to infraorbital nerve constriction injury in rats: Reversal by endothelin receptor antagonists but not non-steroidal anti-inflammatory drugs.
        Pain. 2006; 123: 64-74https://doi.org/10.1016/j.pain.2006.02.010
        • Imamura Y
        • Kawamoto H
        • Nakanishi O
        Characterization of heat-hyperalgesia in an experimental trigeminal neuropathy in rats.
        Exp Brain Res. 1997; 116: 97-103https://doi.org/10.1007/pl00005748
      1. Vos B, Maciewicz R: Behavioral-changes following ligation of the infraorbital nerve in rat - An animal-model of trigeminal neuropathic pain. Lesions of Primary Afferent Fibers as a Tool for the Study of Clinical Pain (International Congress Series) 981:147-158, 1991

        • Clavelou P
        • Dallel R
        • Orliaguet T
        • Woda A
        • Raboisson P
        The orofacial formalin test in rats: Effects of different formalin concentrations.
        Pain. 1995; 62: 295-301https://doi.org/10.1016/0304-3959(94)00273-h
        • Chichorro JG
        • Porreca F
        • Sessle B
        Mechanisms of craniofacial pain.
        Cephalalgia. 2017; 37: 613-626https://doi.org/10.1177/0333102417704187
        • Liu M
        • Li Y
        • Zhong J
        • Xia L
        • Dou N
        The effect of IL-6/Piezo2 on the trigeminal neuropathic pain.
        Aging (Albany NY). 2021; 13: 13615-13625https://doi.org/10.18632/aging.202887
        • Liu MX
        • Zhong J
        • Xia L
        • Dou NN
        • Li ST
        IL-6 contributes to Na(v)1.3 up-regulation in trigeminal nerve following chronic constriction injury.
        Neurol Res. 2020; 42: 504-514https://doi.org/10.1080/01616412.2020.1747719
        • Ahmad KA
        • Shoaib RM
        • Ahsan MZ
        • Deng MY
        • Ma L
        • Apryani E
        • Li XY
        • Wang YX
        Microglial IL-10 and β-endorphin expression mediates gabapentinoids antineuropathic pain.
        Brain Behav Immun. 2021; 95: 344-361https://doi.org/10.1016/j.bbi.2021.04.007
        • Araya EI
        • Turnes JM
        • Barroso AR
        • Chichorro JG
        Contribution of intraganglionic CGRP to migraine-like responses in male and female rats.
        Cephalalgia. 2020; 40: 689-700https://doi.org/10.1177/0333102419896539
        • Chichorro JG
        • Lorenzetti BB
        • Zampronio AR
        Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats.
        Br J Pharmacol. 2004; 141: 1175-1184https://doi.org/10.1038/sj.bjp.0705724
        • Turnes JM
        • Araya EI
        • Barroso AR
        • Baggio DF
        • Koren LO
        • Zanoveli JM
        • Chichorro JG
        Blockade of kappa opioid receptors reduces mechanical hyperalgesia and anxiety-like behavior in a rat model of trigeminal neuropathic pain.
        Behav Brain Res. 2022; 417113595https://doi.org/10.1016/j.bbr.2021.113595
        • Fischer L
        • Parada CA
        • Tambeli CH
        A novel method for subarachnoid drug delivery in the medullary region of rats.
        J Neurosci Methods. 2005; 148: 108-112https://doi.org/10.1016/j.jneumeth.2005.04.021
        • Araya EI
        • Baggio DF
        • Koren LO
        • Andreatini R
        • Schwarting RKW
        • Zamponi GW
        • Chichorro JG
        Acute orofacial pain leads to prolonged changes in behavioral and affective pain components.
        Pain. 2020; 161: 2830-2840https://doi.org/10.1097/j.pain.0000000000001970
        • Araújo IW
        • Chaves HV
        • Pachêco JM
        • Val DR
        • Vieira LV
        • Santos R
        • Freitas RS
        • Rivanor RL
        • Monteiro VS
        • Clemente-Napimoga JT
        • Bezerra MM
        • Benevides NM
        Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria filiformis in induced temporomandibular joint pain.
        Int Immunopharmacol. 2017; 44: 160-167https://doi.org/10.1016/j.intimp.2017.01.005
        • Manuel Muñoz-Lora VR
        • Abdalla HB
        • Del Bel Cury AA
        • Clemente-Napimoga JT
        Modulatory effect of botulinum toxin type A on the microglial P2X7/CatS/FKN activated-pathway in antigen-induced arthritis of the temporomandibular joint of rats.
        Toxicon. 2020; 187: 116-121https://doi.org/10.1016/j.toxicon.2020.08.027
        • Faul F
        • Erdfelder E
        • Lang AG
        • Buchner A
        G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences.
        Behav Res Methods. 2007; 39: 175-191https://doi.org/10.3758/bf03193146
        • Vos BP
        • Strassman AM
        • Maciewicz RJ
        Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat's infraorbital nerve.
        J Neurosci. 1994; 14: 2708-2723https://doi.org/10.1523/jneurosci.14-05-02708
        • Nones CFM
        • Claudino RF
        • Ferreira LEN
        • Dos Reis RC
        • King T
        • Chichorro JG
        Descending facilitatory pain pathways mediate ongoing pain and tactile hypersensitivity in a rat model of trigeminal neuropathic pain.
        Neurosci Lett. 2017; 644: 18-23https://doi.org/10.1016/j.neulet.2017.02.047
        • Hao JX
        • Yu W
        • Xu XJand Wiesenfeld-Hallin Z
        Capsaicin-sensitive afferents mediate chronic cold, but not mechanical, allodynia-like behavior in spinally injured rats.
        Brain Res. 1996; 722: 177-180https://doi.org/10.1016/0006-8993(96)00216-8
        • Shir Y
        • Seltzer Z
        A-fibers mediate mechanical hyperesthesia and allodynia and C-fibers mediate thermal hyperalgesia in a new model of causalgiform pain disorders in rats.
        Neurosci Lett. 1990; 115: 62-67https://doi.org/10.1016/0304-3940(90)90518-e
        • Kopruszinski CM
        • Reis RC
        • Bressan E
        • Reeh PW
        • Chichorro JG
        Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects.
        Eur J Pharmacol. 2015; 762: 326-332https://doi.org/10.1016/j.ejphar.2015.05.063
        • Anderson LC
        • Rao RD
        Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat.
        Arch Oral Biol. 2001; 46: 633-640https://doi.org/10.1016/s0003-9969(01)00024-3
        • Patil S
        • Testarelli L
        Assessment of growth factors, cytokines, and cellular markers in saliva of patients with trigeminal neuralgia.
        Molecules. 2021; 26: 2964https://doi.org/10.3390/molecules26102964
        • Lin SC
        • Yamate T
        • Taguchi Y
        • Borba VZ
        • Girasole G
        • O'Brien CA
        • Bellido T
        • Abe E
        • Manolagas SC
        Regulation of the gp80 and gp130 subunits of the IL-6 receptor by sex steroids in the murine bone marrow.
        J Clin Invest. 1997; 100: 1980-1990https://doi.org/10.1172/jci119729
        • Burke NN
        • Llorente R
        • Marco EM
        • Tong K
        • Finn DP
        • Viveros MP
        • Roche M
        Maternal deprivation is associated with sex-dependent alterations in nociceptive behavior and neuroinflammatory mediators in the rat following peripheral nerve injury.
        J Pain. 2013; 14: 1173-1184https://doi.org/10.1016/j.jpain.2013.05.003
        • Canellada A
        • Alvarez I
        • Berod L
        • Gentile T
        Estrogen and progesterone regulate the IL-6 signal transduction pathway in antibody secreting cells.
        J Steroid Biochem Mol Biol. 2008; 111: 255-261https://doi.org/10.1016/j.jsbmb.2008.06.009
        • Kummer KK
        • Zeidler M
        • Kalpachidou T
        • Kress M
        Role of IL-6 in the regulation of neuronal development, survival and function.
        Cytokine. 2021; 144155582https://doi.org/10.1016/j.cyto.2021.155582
        • Gregus AM
        • Levine IS
        • Eddinger KA
        • Yaksh TL
        • Buczynski MW
        Sex differences in neuroimmune and glial mechanisms of pain.
        Pain. 2021; 162: 2186-2200https://doi.org/10.1097/j.pain.0000000000002215
        • Sorge RE
        • Mapplebeck JC
        • Rosen S
        • Beggs S
        • Taves S
        • Alexander JK
        • Martin LJ
        • Austin JS
        • Sotocinal SG
        • Chen D
        • Yang M
        • Shi XQ
        • Huang H
        • Pillon NJ
        • Bilan PJ
        • Tu Y
        • Klip A
        • Ji RR
        • Zhang J
        • Salter MW
        • Mogil JS
        Different immune cells mediate mechanical pain hypersensitivity in male and female mice.
        Nat Neurosci. 2015; 18: 1081-1083https://doi.org/10.1038/nn.4053
        • Raghavendra V
        • Tanga F
        • DeLeo JA
        Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy.
        J Pharmacol Exp Ther. 2003; 306: 624-630https://doi.org/10.1124/jpet.103.052407
        • Moini-Zanjani T
        • Ostad SN
        • Labibi F
        • Ameli H
        • Mosaffa N
        • Sabetkasaei M
        Minocycline effects on IL-6 concentration in macrophage and microglial cells in a rat model of neuropathic pain.
        Iran Biomed J. 2016; 20: 273-279https://doi.org/10.22045/ibj.2016.04
        • Tjolsen A
        • Berge OG
        • Hunskaar S
        • Rosland JH
        • Hole K
        The formalin test - An evaluation of the method.
        Pain. 1992; 51: 5-17https://doi.org/10.1016/0304-3959(92)90003-t
        • Barroso AR
        • Araya EI
        • de Souza CP
        • Andreatini R
        • Chichorro JG
        Characterization of rat ultrasonic vocalization in the orofacial formalin test: Influence of the social context.
        Eur Neuropsychopharmacol. 2019; 29: 1213-1226https://doi.org/10.1016/j.euroneuro.2019.08.298